Abstract:
In a video conferencing application, a user viewing a scene can performing zooming by selecting an area in the scene, then dynamically switching a video feed of the scene to the selected area of the scene. The hardware and software of the video conferencing application can limit the video transmitted to the user to include only the selected area of the scene. Transmitting only the selected area of the scene, and excluding the non-selected area of the scene from transmission, can more efficiently use the available bandwidth of the video conferencing application.
Abstract:
Technology to provide link aware streaming adaptation is disclosed. In an example, a mobile device can include one or more processors configured to: process a manifest file for an HTTP adaptive stream that is received at the mobile device from a node; determine a physical layer goodput of the mobile device with the node for the HAS; identify a segment throughput estimate for the HAS; and select a representation in the manifest file for a selected period based, on the physical layer goodput for the HAS and the segment throughput for the HAS.
Abstract:
Devices, methods, user equipment (UE), network core devices, gateway devices, evolved node B (eNB), and storage media for UE provisioning are described. In one embodiment, a UE is configured for codec bitrate adaptation via an interface configured to receive a bandwidth indication and a codec awareness indication from an eNB. The UE process the bandwidth indication and identifies, based on the codec awareness indication, a first codec from a plurality of codecs supported by the UE. The UE then configures with the eNB using data encoded with the first codec. This data may, for example, be Voice over Long-Term Evolution (VoLTE) data or other such media data. Selection of the codec or associated codec information may be further based on the codec awareness indication.
Abstract:
Technology to provide improved quality-of-experience-aware multimedia streaming is disclosed. Several types of communications that can be made between clients and servers are described. These communications enable improvements to current approaches that are used to achieve hyper-text transfer protocol (HTTP) adaptive streaming. These messages can be used in conjunction with computer circuitry configured to: determine a bandwidth available to the server for transmitting HTTP adaptive streaming content to a plurality of clients; receive HTTP requests from the plurality of clients for representations offered by the server in a manifest file for the HTTP adaptive streaming; and calculate an availability of each representation that is offered in the manifest file for the server. The availability can be calculated, at least in part, based on the determined bandwidth. The availability of each representation can be communicated from the server to the plurality of clients.
Abstract:
Technology to provide quality of experience aware multimedia streaming is disclosed. In an example, a server operable to provide hyper-text transfer protocol (HTTP) adaptive streaming, can include computer circuitry configured to: determine a bandwidth available to the server for transmitting HTTP adaptive streaming content to a plurality of clients; receive HTTP requests from the plurality of clients for representations offered by the server in a manifest file for the HTTP adaptive streaming; and calculate an availability of each representation that is offered in the manifest file for the server. The availability can be calculated, at least in part, based on the determined bandwidth. The availability of each representation can be communicated from the server to the plurality of clients.
Abstract:
An arrangement includes transceiver logic and control logic. The transceiver logic is configured to receive a media presentation description (MPD) for an adaptive streaming over hyper-text transfer protocol (DASH), wherein the MPD includes one or more adaption sets. The control logic is configured to identify device display capabilities, to select quality values based on the device display capabilities and to request use of the selected quality values. The quality values include dynamic range and color space quality values.
Abstract:
Technology for a multimedia telephony services over internet protocol (IP) multimedia subsystems (IMS) (MTSI) receiver operable to support region of interest (ROI) signaling with a MTSI sender is disclosed. The MTSI receiver can receive a requested region of interest (ROI). The MTSI receiver can signal the requested ROI for transmission to the MTSI sender via a real-time transport control protocol (RTCP) feedback message. The MTSI receiver can decode encoded video received from the MTSI sender. The encoded video can correspond to the requested ROI.
Abstract:
A technology that is operable to authenticate content access for dynamic adaptive streaming over hypertext transfer protocol (HTTP) (DASH) is disclosed. In one embodiment, a client device is configured with circuitry to communicate, to a content server, a request for a media presentation description (MPD). An MPD message is received from the content server indicating one or more content authorization elements to access content at the content server. A request for authorization of the client device to access content at the content server is communicated to an authorization server, when the client device is configured to perform the content authorization elements in the MPD message. An authorization message is received from the authorization server. A content request message requesting one or more DASH segments is communicated to the content server.
Abstract:
Technology for a multimedia telephony services over internet protocol (IP) multimedia subsystems (IMS) (MTSI) receiver operable to support region of interest (ROI) signaling with a MTSI sender is disclosed. The MTSI receiver can receive a requested region of interest (ROI). The MTSI receiver can signal the requested ROI for transmission to the MTSI sender via a real-time transport control protocol (RTCP) feedback message. The MTSI receiver can decode encoded video received from the MTSI sender. The encoded video can correspond to the requested ROI.
Abstract:
Technology to provide link aware streaming adaptation is disclosed. In an example, a mobile device can include one or more processors configured to: process a manifest file for an HTTP adaptive stream that is received at the mobile device from a node; determine a physical layer goodput of the mobile device with the node for the HAS; identify a segment throughput estimate for the HAS; and select a representation in the manifest file for a selected period based, on the physical layer goodput for the HAS and the segment throughput for the HAS.