Abstract:
It is possible to reduce overhead when dynamically establishing an air interface configuration by communicating a modification instruction along with an index associated with a predefine air interface configuration. The modification instruction identifies a modification to one or more parameters of the predefined air interface configuration associated with the index. Together, the index and the modification indication specify a modified air interface configuration that is different than any of the candidate air interface configurations predefined for the network. The modification instruction allows networks to achieve similar degrees of flexibility while using substantially fewer predefined air interface configurations, which in turn permits the index associated with the selected air interface configuration to be signaled using fewer bits.
Abstract:
Embodiments of the present invention provide a method and an apparatus for reciprocity calibration between base stations, which relate to the communications field, and can improve precision of reciprocity calibration between base stations. The method includes: obtaining, by each base station by means of calculation, a precoding vector corresponding to a selected subcarrier of the base station; sending, by all the base stations to UE by using the selected subcarriers of the base stations, downlink user-dedicated reference signals that are mutually orthogonal between cells corresponding to the base stations; obtaining, by each base station, an inter-base station calibration compensation coefficient of the selected subcarrier of the base station; and adjusting, by each base station, a self-calibration matrix of the selected subcarrier according to the inter-base station calibration compensation coefficient of the selected subcarrier of the base station.
Abstract:
Embodiments of the present invention provide a method, an apparatus, and a system for selecting serving nodes for access, where the method includes: obtaining reference signal received parameters of at least two nodes; selecting a downlink serving node from the at least two nodes according to the reference signal received parameter of each node; and sending an uplink signal, so that the downlink serving node selects an uplink serving node from the at least two nodes according to the uplink signal; or, selecting an uplink serving node from the at least two nodes according to the reference signal received parameter of each node, and sending an uplink signal. In the embodiments of the present invention, a user equipment selects a downlink serving node from at least two nodes according to the reference signal received parameter of each node; then the user equipment sends an uplink signal.
Abstract:
Embodiments of the present invention disclose a method for accessing a base station, a base station and a user equipment, belonging to the field of communications technologies. The method includes: establishing, by a current macro base station, a control plane connection with a user equipment according to an access request of the user equipment, and assigning a first cell-radio network temporary identity to the user equipment; and when receiving a measurement report of pico base stations reported by the user equipment, selecting a pico base station for the user equipment according to a preset policy so that the user equipment establishes a data plane connection with the pico base station, and notifying context information of the user equipment to the pico base station, where the context information includes the first cell-radio network temporary identity assigned to the user equipment.
Abstract:
A signal transmission method and an apparatus are disclosed. In an embodiment a signal transmission method includes generating a reference signal and sending the reference signal, wherein the reference signal is sent in a specific time-frequency resource, and the specific time-frequency resource is located on symbols corresponding to a synchronization signal block.
Abstract:
Embodiments of this application disclose a resource configuration method and a device. The method includes: generating, by a transmit end device, configuration information, where the configuration information is used to indicate at least one resource bundling size, the resource bundling size belongs to a resource bundling size set, and the resource bundling size set corresponds to at least one system configuration parameter; and sending, by the transmit end device, the configuration information.
Abstract:
This application discloses a DMRS indicating method, a DMRS receiving method, and an apparatus. The method includes: determining, by a transmit end from a plurality of groups of demodulation reference signal DMRS configuration information, DMRS configuration information corresponding to a current DMRS transmission scheme, and obtaining DMRS indication information based on the DMRS configuration information, where each group of DMRS configuration information includes a plurality of pieces of DMRS configuration information; and sending, by the transmit end, the DMRS indication information. The method and the apparatus provided in this application are implemented to match a plurality of scenarios in NR. This can satisfy a requirement for transmitting more layers of data, and can further reduce indication overheads.
Abstract:
It is possible to reduce the implementation complexity associated with dynamic carrier configuration by defining overlapping sets of candidate numerologies for at least some carriers in the network. A common numerology is included in sets of candidate numerologies pre-associated with two different carriers. This reduces the amount of numerologies that need to be supported by the corresponding user equipments (UEs) and base stations, which in turn reduces the complexity of those devices, e.g., less complex hardware, protocol stacks, and software, lower storage and processing requirements, etc. The common numerology specifies a common subset of physical layer parameters for both carriers. In one example, the common numerology specifies the same sub-carrier frequency spacing and symbol duration for both carriers. The common numerology may further specify the same cyclic prefix (CP) length for symbols communicated over both carriers.
Abstract:
It is possible to reduce the implementation complexity associated with dynamic carrier configuration by defining overlapping sets of candidate numerologies for at least some carriers in the network. A common numerology is included in sets of candidate numerologies pre-associated with two different carriers. This reduces the amount of numerologies that need to be supported by the corresponding user equipments (UEs) and base stations, which in turn reduces the complexity of those devices, e.g., less complex hardware, protocol stacks, and software, lower storage and processing requirements, etc. The common numerology specifies a common subset of physical layer parameters for both carriers. In one example, the common numerology specifies the same sub-carrier frequency spacing and symbol duration for both carriers. The common numerology may further specify the same cyclic prefix (CP) length for symbols communicated over both carriers.
Abstract:
This application provides a reference signal sending and receiving method, a network device, and a terminal device. The method includes: determining, by a network device, a transmit power used to transmit a reference signal, where the transmit power is related to a quantity of ports carried on an RE occupied by the reference signal; and sending, by the network device, the reference signal based on the transmit power.