Abstract:
In the semiconductor switch of the present invention, the gate electrode, source electrode and drain electrode are formed such that the distance between the gate and the drain of an MESFET, assuming a shunt FET, is longer than the distance between the gate and the drain of an MESFET, assuming a through FET, so that the gate breakdown voltage of the MESFET, assuming a shunt FET, is increased without changing the gate breakdown voltage of the MESFET, assuming a through FET.
Abstract:
Disclosed is a compound semiconductor field effect transistor. The compound semiconductor field effect transistor has a charge absorption layer and a semiconductor laminated structure. The charge absorption layer includes a compound semiconductor layer of a first conductive type formed in a part of a compound semiconductor substrate having a semi-insulating layer. The semiconductor laminated structure includes at least an active layer including a compound semiconductor layer of a second conductive type epitaxially grown so as to cover the charge absorption layer and a region of the semi-insulating surface where the charge absorption layer is not formed. A source electrode is formed on the semiconductor laminated structure, being electrically connected to the charge absorption layer.
Abstract:
A semiconductor circuit includes at least first and second field effect transistors. A source electrode of the first field effect transistor is connected to a drain electrode of the second field effect transistor via a first AC current blocking element and is also grounded via a bypass capacitor. A drain electrode of the first field effect transistor is connected to a power supply. A source-drain voltage of the first field effect transistor is equal to or higher than a pinch-off voltage of the first field effect transistor. A source-drain voltage of the second field effect transistor is equal to or higher than a pinch-off voltage of the second field effect transistor.
Abstract:
An optical connector ferrule of this invention includes a holding portion arranged at a position along an inserting direction of optical fibers to constitute a front surface of the ferrule and having a plurality of first through holes for inserting the optical fibers therethrough and two second through holes for inserting guide pins, the holding portion holding portions of the optical fibers near distal ends thereof, the second through holes and the first through holes having central axes that are substantially parallel to each other, and the first through holes being arrayed in two rows in a direction connecting centers of the second through holes; and an optical fiber tape accommodating portion having an insertion opening for inserting therethrough optical fiber tapes having the optical fibers held by the holding portion, an internal space for partially accommodating the optical fiber tapes, and an injection opening for injecting therethrough an adhesive for adhering and fixing the inserted optical fiber tapes and the ferrule with each other. The optical connector ferrule is formed integrally by resin molding. When optical fiber tapes are inserted in this ferrule to be stacked in two layers and the ferrule and the optical fiber tapes are adhered and fixed to each other.
Abstract:
An optical fiber array according to the present invention includes an optical coupling end face to be optically coupled to another optical line, and first ends of a plurality of optical fibers are arrayed in the optical coupling end face. The optical fiber array includes a lower plate (3a) having a plurality of V-shaped grooves (4) for positioning the optical fibers exposed from one end of a ribbon part of the optical fibers, and an upper plate (3b) for pressing each optical fiber provided in each V-shaped groove (4) of the lower plate into the positioning groove. A boundary portion between the ribbon part (7) and the optical fibers (1) is fixed between the first and second plates (3a, 3b) by heat resistant adhesive (10), and the optical fibers from the boundary portion to a front end of the array are fixed by solder (6) to achieve hermetic sealing.
Abstract:
A housing structure for coupling and releasing optical modules comprises three housing. A first housing including a distal wall at one end, an opening at the other end, and the opening having a first protrusion part protruding toward inside of the opening. A second housing for receiving and holding an optical module provided in the first housing so as to be slidable. The second housing includes a second protrusion part for engaging with the first protrusion part and the sliding of the second housing being limited by the distal wall of the first housing and the first protrusion part. A third housing for holding an another optical module including holding parts for selectively holding the second housing and a contact part provided at one end of the third housing for touching the second housing. The second housing also includes engaging means for engaging the holding parts of the third housing. In case of coupling the optical modules, the third housing is pushed into the first and second housings, whereby the second housing is pressed by the contact part of the third housing and the second protrusion part of the second housing is displaced across the first protrusion part. In case of releasing the coupling of the optical modules, the third housing is separated from the first and second housings and the second protrusion part of the second housing returns to an initial position thereof over the first protrusion part of the first housing.
Abstract:
A fiber-optic cable with a fitting capable of increasing connection strength between a fiber-optic cable and an optical connector, which includes a fiber-optic cable including a sheath and a tensile member, an inner ring mounted on a circumference of the sheath from a position where the tensile member is drawn out of the sheath through a slit to a front end of the sheath, and a fitting mounted on the circumference and including a first portion mounted from the position where the tensile member is drawn out of the sheath to a position of the sheath on a side opposite to the ring side, and a second portion mounted while covering a circumference of the ring, wherein the first portion connects with the sheath, and the end portion of the tensile member is sandwiched by the ring and the second portion.
Abstract:
A nitride semiconductor device includes a semiconductor multilayer formed on a substrate, a first ohmic electrode and a Schottky electrode spaced apart from each other on the semiconductor multilayer; and a passivation film covering a top of the semiconductor multilayer. The semiconductor multilayer 102 includes a first nitride semiconductor layer, a second nitride semiconductor layer, and a p-type third nitride semiconductor layer 124 sequentially formed on the substrate. The third nitride semiconductor layer contains p-type impurities, and is selectively formed between the first ohmic electrode and the Schottky electrode in contact with the Schottky electrode.
Abstract:
A method for generating electric power including the steps of: (a) preparing a solar cell having a condensing lens and a solar cell element, wherein the solar cell element includes an n-type GaAs layer, a p-type GaAs layer, a quantum tunneling layer, an n-type InGaP layer, a p-type InGaP layer, a p-type window layer, an n-side electrode, and a p-side electrode, and satisfies the following equation (I): d2
Abstract:
A nitride semiconductor device includes a semiconductor multilayer formed on a substrate, a first ohmic electrode and a Schottky electrode spaced apart from each other on the semiconductor multilayer; and a passivation film covering a top of the semiconductor multilayer. The semiconductor multilayer 102 includes a first nitride semiconductor layer, a second nitride semiconductor layer, and a p-type third nitride semiconductor layer 124 sequentially formed on the substrate. The third nitride semiconductor layer contains p-type impurities, and is selectively formed between the first ohmic electrode and the Schottky electrode in contact with the Schottky electrode.