Abstract:
Endovascular grafting system having a capsule catheter comprising a flexible elongate tubular member having proximal and distal extremities and a capsule mounted on the distal extremity of the tubular member. The capsule is generally cylindrical in shape and is formed of a helical wrap of a metal ribbon. The wraps are bonded into a unitary capsule permitting bending of said unitary capsule. A graft is disposed within the capsule. The graft is comprised of a tubular member having proximal and distal ends. Hooks are secured to the proximal and distal ends of the tubular member and face in a direction outwardly towards the inner wall of the capsule. A push rod is disposed within the capsule catheter and engages the graft whereby upon relative movement between the push rod and the capsule catheter, the graft can be forced out of the capsule.
Abstract:
An intraluminal grafting system includes a hollow graft which has a proximal staple positioned proximate its proximal end and a distal staple adapted proximate its distal end. The system includes a capsule for transporting the graft through the lumen and for positioning the proximal end of the graft upstream in a lumen which may be a blood vessel or artery. A tube is connected to the capsule and extends to exterior the vessel for manipulation by the user. A catheter is positioned within the tube to extend from the cavity and through the graft to exterior the body. The catheter has an inflatable membrane or balloon proximate the distal end thereof which is in communication via a channel with inflation and deflation means located exterior the vessel. With the inflatable membrane deflated, the capsule is positioned in the lumen and manipulated to a desired location. The inflatable membrane is manipulated by the rod away from the graft. The force exerted by the inflatable membrane and the structure of the staples urges the staples in the vessel wall, retaining the graft in position. The remainder of the intraluminal grafting system is then removed from the corporeal vessel.
Abstract:
A combination catheter and duct clamp apparatus and method. The apparatus includes a hollow member with a substantially planar clamping surface at one end and a sliding member with a substantially planar clamping surface at one end which is telescopically slidable within the hollow member. A spring maintains an essentially constant clamping pressure between the clamping surfaces.The clamp is ideally suited for use during cholangiography where it may be used for inserting a catheter within the cystic duct and for thereafter clamping the cystic duct around the catheter. The clamping pressure provides an adequate seal of the cystic duct and does not occlude the inserted catheter. Multiple clamping angles give the clamp unique versatility during the surgical procedure. Being constructed out of a radiolucent material, the clamp may be left in place while a cholangiogram is taken without interfering with the completed cholangiogram.
Abstract:
A surgical kit for draining a body cavity of a patient includes a sterile enclosure, a body cavity drainage device with a sterilized drainage tube having one or more lateral openings through a side wall thereof, and a sterilized body cavity drainage tube placement tool configured to be inserted through a lateral opening of the one or more lateral openings. The body cavity drainage device and the placement tool are contained within the sterile enclosure. Methods relate to providing surgical tools for draining a body cavity of a patient.
Abstract:
A body cavity drainage device for a patient includes a drainage tube having a proximal end, a distal end, and one or more lumens extending longitudinally through a wall thereof. The distal end may be configured to be inserted into a body cavity of a patient during use of the body cavity drainage device. The body cavity drainage device may include an activation apparatus configured to alter a position of the distal end of the drainage tube relative to the proximal end of the drainage tube. The activation apparatus may include a rotatable control device and one or more flexible members disposed within the one or more lumens extending longitudinally through a wall of the drainage tube. The one or more flexible members may be operably coupled to the rotatable control device at a proximal end of the one or more flexible members and to the drainage tube at or near a distal end of the one or more flexible members. Methods relate to forming and using a body cavity drainage device.
Abstract:
Body cavity drainage devices and associated methods are disclosed herein. In some embodiments a body cavity drainage device comprises a drainage tube having a proximal end and a distal end; and an automated means to move the distal end of the drainage tube about a body cavity of a patient. In some embodiments, the distal end of the drainage tube may be moved by one or more of the application of a magnetic field, the insertion or withdrawal of fluid from a closed lumen, and manipulation by an external motion generator. In additional embodiments, a body cavity drainage device includes at least a second open lumen for the insertion of a fluid into a body cavity. In yet further embodiments, an internal tissue may be massaged from within a body cavity of a patient.
Abstract:
An intraluminal grafting system includes a hollow graft which has a proximal staple positioned proximate its proximal end and a distal staple adapted proximate its distal end. The system includes a capsule for transporting the graft through the lumen and for positioning the proximal end of the graft upstream in a lumen which may be a blood vessel or artery. A tube is connected to the capsule and extends to exterior the vessel for manipulation by the user. A catheter is positioned within the tube to extend from the cavity and through the graft to exterior the body. The catheter has an inflatable membrane or balloon proximate the distal end thereof which is in communication via a channel with inflation and deflation means located exterior the vessel. With the inflatable membrane deflated, the capsule is positioned in the lumen and manipulated to a desired location. The inflatable membrane is manipulated by the rod away from the graft. The force exerted by the inflatable membrane and the structure of the staples urges the staples in the vessel wall, retaining the graft in position. The remainder of the intraluminal grafting system is then removed from the corporeal vessel.
Abstract:
An intraluminal grafting system includes a hollow graft which has a proximal staple positioned proximate its proximal end and a distal staple adapted proximate its distal end. The system includes a capsule for transporting the graft through the lumen and for positioning the proximal end of the graft upstream in a lumen which may be a blood vessel or artery. A tube is connected to the capsule and extends to exterior the vessel for manipulation by the user. A catheter is positioned within the tube to extend from the cavity and through the graft to exterior the body. The catheter has an inflatable membrane or balloon proximate the distal end thereof which is in communication via a channel with inflation and deflation means located exterior the vessel. With the inflatable membrane deflated, the capsule is positioned in the lumen and manipulated to a desired location. The inflatable membrane is manipulated by the rod away from the graft. The force exerted by the inflatable membrane and the structure of the staples urges the staples in the vessel wall, retaining the graft is position. The remainder of the intraluminal grafting system is then removed from the corporeal vessel.
Abstract:
A method for performing laparoscopic surgery involving placing cannulas through the abdominal wall of a patient preparatory to surgery is disclosed. The method includes inserting a needle and blunt-ended guidewire through the abdominal wall until the tip of the needle and the guidewire are positioned within the peritoneal cavity of the patient. A dilator or dilators having tapered ends are threaded over the guidewire until the appropriate size of aperture is created in the peritoneum. The method of the invention provides a safer means of introducing laparoscopic equipment into the peritoneal cavity with reduced incidence of inadvertent punctures to internal organs and vessels. A kit including the necessary components for performing the method is also disclosed.