Abstract:
Exemplary embodiments provide changes to routing schemes, i.e. WCMP groups or WCMP sets, installed in a network traffic distribution table, e.g. multipath table. WCMP groups of a multipath table are updated to accommodate a new WCMP group. This can be achieved by reducing the size of the existing WCMP groups on the multipath table. The goal is to reduce the existing WCMP groups just enough to make room for the new WCMP group. An objective is to minimize the number of existing WCMP groups to be reduced before a new WCMP group can be installed in the multipath table.
Abstract:
Systems and methods for increasing bandwidth in a computer network are provided. A computer network can include a first lower level switch, first and second upper level switches, and first and second passive optical splitters, and a mirror. The first passive optical splitter can have a first port directly coupled to the first upper level switch, a second port directly coupled to the second upper level switch. The second passive optical splitter can have a port directly coupled to a port of the first passive optical splitter, and a port directly coupled to the first lower level switch. The mirror can be coupled to a port of the second passive optical splitter and reflect an optical signal received from the second passive optical splitter to the first upper level switch and second upper level switch through the second passive optical splitter and the first passive optical splitter.
Abstract:
Systems and methods of configuring a computer network are provided. N network nodes can each form M communication links with other network nodes. A number of communication links equal to the largest integer not greater than the quotient of M divided by (N−1) can be assigned between each pair of network nodes. The remaining communication links can be assigned such that a graph represented by the network nodes and communication links is substantially geometrically symmetric.
Abstract:
Exemplary embodiments allocate network traffic among multiple paths in a network, which may include one or more preferred paths (e.g. shortest paths) and one or more alternative paths (e.g., non-shortest paths). In one embodiment, network traffic in form of flows may be allocated to the preferred paths until the allocation of additional network traffic would exceed a predetermined data rate. Additional flows may then be sent over the alternative paths, which may be longer than the preferred path. The paths to which each flow is assigned may be dynamically updated, and in some embodiments the path assignment for a particular flow may time out after a predetermined time. Accordingly, the flow traffic of each path may be balanced based on real-time traffic information.
Abstract:
A multi-stage network is provided, where the network includes a first stage comprising a first plurality of network switching devices, the first plurality of network devices being classified into switching groups. The network further includes a second stage comprising a second plurality of network switching devices. A linking configuration, comprising a plurality of links between the first plurality of network switching devices and the second plurality of network switching devices, couples the first stage to the second stage. Each first stage network switching device in a given switching group includes the same number of links to any given second stage network switching device as each other first stage network switching device in that group.
Abstract:
Systems and methods of configuring a datacenter network are provided. A datacenter network can have a first stage of switches and a second stage of switches. A first stage of switches each including at least one first stage switch can be defined. A second stage of switches each including at least one second stage switch can be defined. For each first stage switch group of a first set of first stage switches, a communication link can be assigned between each first stage switch and each second stage switch in a respective second stage switch group. For each first stage switch group of a second set of first stage switches, a communication link can be assigned between each first stage switch and a single second stage switch of each second stage switch group.
Abstract:
A system determines a physical topology of a network including a plurality of nodes. Each node includes a multi-chip higher-tier switch, and each chip in the multi-chip higher-tier switch includes a plurality of ports. A network configuration module is configured to assign physical connections to respective ports of chips of the higher-tier switches through an iterative process. The iterative process includes selecting a first route of a plurality of routes, assigning for the source node of the selected route, a first port on a first chip having an odd number of free ports. For at least one intermediate node of the selected route, second and third ports on a second chip having an even number of free ports are assigned. For a destination port for the selected route, a fourth port on a third chip having an odd number of free ports is assigned.
Abstract:
As an overview, the present disclosure presents a system for increasing network optimization. In particular, the disclosure discusses a unified system for control of data routing in a dynamic network. In some implementations, edge devices (i.e., hosts or exterior switches) are interconnected through a network fabric (i.e., a plurality of interior switches). The hosts and switches include forwarding engines, which determine the next destination of incoming traffic. The disclosure discusses a network controller that collects application requirements and programs the forwarding engines of the edge devices and the network fabric responsive to the application requirements.
Abstract:
Embodiments provide a methodology for designing a large-scale non-blocking OCS using a multi-stage folded CLOS switch architecture for use in datacenter networks and fiber-rich backbone network POPs. One aspect employs a folded CLOS architecture because of its ease of implementation, enabling the topology to scale arbitrarily with increasing number of stages. The fraction of ports allocated for internal switch wiring (overhead) also increases with the number of stages. Design decisions are made to carefully optimize the insertion loss per module, number of ports per module, number of stages and the total scale required. Other embodiments include folded CLOS switch architectures having at least two stages. In one example, power monitoring may be included only on the leaf switches.
Abstract:
An autonomous network and a corresponding routing method include determining routing paths by a controller, and providing the determined routing paths to a data packet processor located remotely from the controller. The data packet processor routes outgoing data packets, based on information from the controller, through a plurality of switches remotely from the data packet processor. Each switch includes a plurality of network interfaces. For an outgoing data packet, the data packet processor determines a network interface over which to transmit the data packet, and adds an indication of the determined network interface in a header of the data packet. The data packet processor forwards the modified data packet to the switch including the determined network interface. The switch identifies the network interface based on the indication, and transmits the outgoing data packet over the identified network interface.