Abstract:
A method for cracking hydrocarbon, comprises: providing steam and hydrocarbon; and feeding steam and hydrocarbon into a reactor accessible to hydrocarbon and comprising a perovskite material of formula AaBbCcDdO3−δ, wherein 0
Abstract:
A method includes forming one or more oxide barrier layers on one or more protected portions of a magnetic, metallic body, and converting one or more unprotected portions of the magnetic, metallic body to a less magnetic material by exposing the magnetic metallic body having the one or more oxide barrier layers formed thereon to nitrogen. One or more protected portions of the magnetic, metallic body that are beneath the one or more oxide barrier layers are not converted to the less magnetic material. The method can be used to form one or more layers of a laminated electric motor.
Abstract:
A system and method for measuring cooling effectiveness of a component is disclosed. The method includes providing a component having a surface provided with a coating including a volatilization-susceptible constituent and a volatilization-resistant constituent. Further, the method includes supplying a first gaseous medium over the surface of the component through a plurality of holes in the component and feeding a second gaseous medium along the surface of the component. The method includes exposing the surface of the component to the first and second gaseous mediums for a predetermined period. The method further includes determining a thickness of the coating exposed to the flow of the first and second gaseous mediums. The method includes analyzing the thickness of the coating to determine whether the coating is removed from the surface of the component upon exposure to the first and second gaseous mediums.
Abstract:
A system and method for measuring cooling effectiveness of a component is disclosed. The method includes providing a component with a coating applied on a surface of the component. Further, the method includes supplying a first gaseous medium over a surface of the component through a plurality of holes in the component and feeding a second gaseous medium along the surface of the component. Further, the method includes exposing the surface of the component to the first and second gaseous mediums for a predetermined period. The method further includes obtaining an image of the surface of the component exposed to the first and second gaseous mediums for the predetermined period. The method includes analyzing the obtained image to determine whether at least a portion of the coating is removed from the surface of the component upon exposure to the second gaseous medium.
Abstract:
A cleaning solution for a turbine engine is provided. The cleaning solution includes a reagent composition including water within a range between about 25 percent and about 70 percent by volume of the reagent composition, an acidic component within a range between about 0.1 percent and about 50 percent by volume of the reagent composition, and an amine component within a range between about 1 percent and 40 percent by volume of the reagent composition. The reagent composition is diluted with water by a factor of up to about 40 to form the cleaning solution. The cleaning solution has a pH value in the range between 2.5 and 7.0. The cleaning solution is used to clean a component of the turbine engine.
Abstract:
Methods for reducing a concentration of hexavalent chromium within a first aluminum slurry by adding a reducing agent to form a second aluminum slurry are provided. The reducing agent causes a chemical reduction reaction with the hexavalent chromium compound of the first aluminum slurry to form a trivalent chromium compound within the second aluminum slurry such that a first weight ratio of hexavalent chromium to trivalent chromium in the first aluminum slurry is decreased to a second weight ratio of hexavalent chromium to trivalent chromium in the second aluminum slurry, with the second weight ratio being less than the first weight ratio.
Abstract:
A method includes forming one or more oxide barrier layers on one or more protected portions of a magnetic, metallic body, and converting one or more unprotected portions of the magnetic, metallic body to a less magnetic material by exposing the magnetic metallic body having the one or more oxide barrier layers formed thereon to nitrogen. One or more protected portions of the magnetic, metallic body that are beneath the one or more oxide barrier layers are not converted to the less magnetic material. The method can be used to form one or more layers of a laminated electric motor.
Abstract:
A surface of an article is modified by aluminizing an initial surface at a first temperature to form a first aluminized layer and a sublayer, removing at least a portion of the first aluminized layer, aluminizing the sublayer at a second temperature to form a second aluminized layer, and finally removing at least a portion of the second aluminized layer to form a processed surface. The second temperature is less than the first temperature and a roughness of the processed surface is less than the roughness of the initial surface.
Abstract:
The present invention is directed to coating compositions for forming diffusion coatings on metal-based substrates. The coating compositions may include a metal powder, an inorganic salt, an activator, and a binder. The present invention is also directed to processes for forming diffusion coatings on metal-based substrates using the disclosed coating compositions.
Abstract:
A composition includes molybdenum disulfide, epoxy binder, and 0.01 to 3 wt % lead. The composition is useful, for example, as dry film lubricant.