Abstract:
Various embodiments include apparatuses adapted to include a dynamoelectric machine rotor with a modified outer surface. In some embodiments apparatuses include a dynamoelectric machine rotor including a rotor body having a spindle, pole regions, the pole regions having a non-uniform radial distance from an axis of rotation of the rotor to an outer surface of the pole regions and a plurality of slots in the outer surface of the rotor body, the plurality of slots being spaced apart in a circumferential direction of the rotor body, each of the plurality of slots extending in an axial direction of the rotor body.
Abstract:
An electric machine with a low profile retention assembly for retention of a stator core is disclosed. A first housing houses the stator core. The first housing has an axial end face with a circumferentially extending, shaped profile having recessed portions that project axially inward alternating with non-recessed portions. A portion of the stator core extends axially out from the recessed portions. A core retention spring is disposed circumferentially at the axial end face of the first housing. The core retention spring has direct contact with the portion of the stator core that extends axially out from the recessed portions of the first housing and the shaped profile of the housing. The core retention spring pushes against the portion of the stator core that extends that extends axially out from the first housing, imparting one or more of an axial load and radial load into the stator core.
Abstract:
An electric machine having a hybrid insulative-conductive manifold is disclosed. In one aspect, an electric machine includes a manifold that includes an insulative plate and a conductive backplate positioned adjacent to the insulative plate. The insulative plate and the backplate define a first channel and a second channel therebetween. The electric machine also includes a prime winding and a secondary winding electrically isolated from the prime winding. The prime winding and the secondary winding are both in fluid communication with the first channel and the second channel. A terminal conductor extends through the backplate and insulative plate and is electrically coupled with the prime winding. The terminal conductor is electrically isolated from the backplate and provides cooling fluid to the prime winding and the first channel so that cooling fluid flows between the terminal conductor and the prime winding and between the terminal conductor and the first channel.
Abstract:
Aspects of the present disclosure are directed to systems and methods for detecting Partial Discharge (PD) associated with wide bandgap semiconductor-based electrical drive systems in real time. In one aspect, signals, including noise associated with drive switching and other background noises are detected using a sensing device. The signals are received by a real-time spectrum analyzer. The spectrum analyzer transforms the signals into the frequency domain and determines or registers the frequency domain profiles of the signals. The spectrum analyzer performs signal discrimination between at least one other signal included within the signals and switching noise based on their frequency domain profiles. Based on the discrimination analysis, the presence of a partial discharge signal may be detected. A physics-based signal discrimination approach can also be used for signal discrimination, for example utilizing pressure-dependency of characteristics of a PD signal.
Abstract:
An electric machine can include a stator core having a plurality of core teeth that define a plurality of core slots in a surface thereof. A winding can be housed at least partially in the core slots. The winding can include a tube defining a channel through at least a portion thereof and one or more wires disposed along a surface of the tube that is opposite the channel. A cooling system can be operably coupled with the channel and configured to move a cooling fluid through the channel.
Abstract:
An electric component for an electric machine includes a body having slots defined therein, and a conductive winding extending out of axial end(s) of the slot(s). The electric component may include any electric machine component having conductive windings, e.g., a stator for a generator. The electric component includes a resin dam around the conductive winding at axial end(s) of the slot(s). The resin dam blocks liquid communication through at least a space between the conductive winding and an inner surface of the slot(s), during manufacture. The electric component also includes a (solidified) insulating resin in the slot(s) and against the resin dam(s) at the axial end(s) of the slot(s). Any number of the conductive windings and slots may include a resin dam, e.g., one, some or all. The resin dams ensure complete filling of the slots and encapsulation of the conductive windings.
Abstract:
Aspects of the present disclosure are directed to systems and methods for detecting Partial Discharge (PD) associated with wide bandgap semiconductor-based electrical drive systems in real time. In one aspect, signals, including noise associated with drive switching and other background noises are detected using a sensing device. The signals are received by a real-time spectrum analyzer. The spectrum analyzer transforms the signals into the frequency domain and determines or registers the frequency domain profiles of the signals. The spectrum analyzer performs signal discrimination between at least one other signal included within the signals and switching noise based on their frequency domain profiles. Based on the discrimination analysis, the presence of a partial discharge signal may be detected. A physics-based signal discrimination approach can also be used for signal discrimination, for example utilizing pressure-dependency of characteristics of a PD signal.
Abstract:
Various embodiments include apparatuses adapted to include a dynamoelectric machine rotor with a modified outer surface. In some embodiments apparatuses include a dynamoelectric machine rotor including a rotor body having a spindle, pole regions, the pole regions having a non-uniform radial distance from an axis of rotation of the rotor to an outer surface of the pole regions and a plurality of slots in the outer surface of the rotor body, the plurality of slots being spaced apart in a circumferential direction of the rotor body, each of the plurality of slots extending in an axial direction of the rotor body.
Abstract:
A method for laterally moving an industrial machine is provided. The method may include: supporting the industrial machine on a pair of rail elements configured to be positioned laterally below and support the industrial machine, the rail elements allowing the industrial machine to be moved laterally from a first operative position to a second, maintenance position. A pair of linear actuators configured to laterally move the industrial machine from the first, operative position to the second, maintenance position.
Abstract:
A system for laterally moving an industrial machine is provided. The system includes a pair of rail elements configured to be positioned laterally below and support the industrial machine, the rail elements allowing the industrial machine to be moved laterally from a first operative position to a second, maintenance position; and a pair of linear actuators configured to laterally move the industrial machine as from the first, operative position to the second, maintenance position. The rail elements may include a first skid configured to couple laterally to an underside of the industrial machine at a first axial position; and a second skid configured to couple laterally to an underside of the industrial machine at a second axial position. First and second segmented support rails are positioned in sliding, aligned contact with the first and second skid, respectively, and are configured to be supported on a respective machine foundation.