Abstract:
A radiographic imaging device includes: a radiation detector including plural pixels, each including a sensor portion and a switching element; a detection unit that detects a radiation irradiation start if an electrical signal caused by charges generated in the sensor portion satisfies a specific irradiation detection condition, and/or if an electrical signal caused by charges generated in a radiation sensor portion that is different from the sensor portion satisfies a specific irradiation detection condition; and a control unit that determines whether or not noise caused by external disturbance has occurred after the detection unit has detected the radiation irradiation start, and if the noise has occurred, that stops a current operation of the radiation detector, and causes the detection unit to perform detection.
Abstract:
The radiographic imaging device that configures the disclosed radiographic imaging system has at least a camera that images a main cassette body. Said camera is integrally configured to a radiation source and a control device that controls the main cassette body or is integrally configured to a main radiation source body that houses the radiation source.
Abstract:
A radiation detection device has: a scintillator for converting radiation into fluorescence; a photoelectric conversion unit for converting the fluorescence into an electric signal; and a reset light source unit for exposing reset light to the photoelectric conversion unit. A system control unit has an optical reset disabling unit for, based on a reset disabling instruction, disabling the exposure of the reset light output from the reset light source unit.
Abstract:
A determination section of an FPD checks external information against a determination table and determines whether detection of a rise of X-ray pulses is allowed based on an output voltage from a short-circuited pixel. The FPD detects X-ray images. The external information is transmitted from an imaging control device. The X-ray pulses are sequentially generated by an X-ray generating apparatus. A controller selects a pulse irradiation mode in a case where the detection of the rise of the X-ray pulse is allowed. If not, a successive irradiation mode is selected. In the pulse irradiation mode, the rise and the fall of the X-ray pulse are detected and timing of storage operation is synchronized with the detected timing of the rise. In the successive irradiation mode, the storage operation is performed at predetermined time intervals without the detection of the rise and the fall of the X-ray pulse.
Abstract:
A radiation imaging system that can continuously use sections of a radiation imaging device that has not been damaged and a radiation imaging device are provided. The radiation imaging system comprises: a radiation device that applies radiation; and the radiation imaging device with an imaging panel that captures images of the applied radiation. The radiation imaging device comprises: a failure cause detection unit that detects environmental noise or falls that cause failures in the radiation imaging device; a malfunction diagnostic unit that, in a case where a detected environmental noise value reaches a threshold value or in a case where a fall has been detected, diagnoses a malfunction in the radiation imaging device; and a function limiting unit that applies limits to the radiation imaging device functions that are used continuously, in accordance with the diagnosis results of the malfunction diagnostic unit.
Abstract:
An X-ray image detecting device has an FPD having a matrix of pixels each for accumulating signal charge in accordance with an X-ray irradiation amount. An imaging area of the FPD is partitioned into a plurality of divided sections A to I. Each of the divided sections A to I has a short pixel for detecting X-ray irradiation. In a synchronization control for controlling the FPD in synchronization with detection of a start of X-ray emission from an X-ray source, a control unit for controlling the X-ray image detecting device uses all the divided sections A to I. In an automatic exposure control for stopping the X-ray emission from the X-ray source by detecting a total X-ray irradiation amount, the control unit uses part of the divided sections, e.g. the short pixels of the divided sections that are judged to be opposed to an object in the synchronization control.
Abstract:
A radiation detector has a sensor panel unit which includes two sensor panels and in which end portions of the two sensor panels are arranged to overlap each other in a thickness direction. An image processing unit acquires two projection images from the two sensor panels. A combination unit of the image processing unit performs a process related to image quality on the projection image in a case in which a tomographic image which is a diagnosis image to be used for a doctor's diagnosis is generated and does not perform the process related to image quality on the projection image in a case in which a scout image which is a confirmation image for confirming a reflected state of the subject is generated.
Abstract:
A CT apparatus includes a radiation source that emits radiation, a radiation detector that detects the radiation, an annular frame to which the radiation source and the radiation detector are attached and in which a subject is positioned in a bore, and three columns that hold the frame to be movable up and down in a vertical direction.
Abstract:
A radiographic imaging device includes: a radiation detector including plural pixels, each including a sensor portion and a switching element; a detection unit that detects a radiation irradiation start if an electrical signal caused by charges generated in the sensor portion satisfies a specific irradiation detection condition, and/or if an electrical signal caused by charges generated in a radiation sensor portion that is different from the sensor portion satisfies a specific irradiation detection condition; and a control unit that determines whether or not noise caused by external disturbance has occurred after the detection unit has detected the radiation irradiation start, and if the noise has occurred, that stops a current operation of the radiation detector, and causes the detection unit to perform detection.
Abstract:
A position detection unit is disposed at an exposure position that is included in a camera image and a field of view of a camera and outputs a position signal indicating the position of a part of a peripheral portion of an electronic cassette. The calculation unit calculates an in-image cassette position which is the position of the electronic cassette in the camera image, on the basis of the position, direction, and size of the position detection unit in the camera image and the position signal. A composite image generation unit generates a composite image of the camera image and a cassette frame indicating the in-image cassette position. A display controller displays the composite image on a touch panel.