Abstract:
Provided is a dual-mode display including a substrate and a plurality of sub-pixels on the substrate, in which each sub-pixel includes an emissive device, a color selection reflector disposed on one side of the emissive device, and an optical shutter disposed on another side of the emissive device, wherein the emissive device includes a cathode and an anode, and the cathode and the anode include a carbon-based material including graphene sheets, graphene flakes, and graphene platelets, and a binary or ternary transparent conductive oxide including indium oxide, tin oxide, and zinc oxide.
Abstract:
The inventive concept provides organic light emitting diodes and methods of manufacturing an organic light emitting diode. The organic light emitting diode includes a substrate, a first electrode layer and a second electrode layer formed on the substrate, an organic light emitting layer disposed between the first electrode layer and the second electrode layer and generating light, and a scattering layer between the first electrode layer and the substrate or between the first electrode layer and the organic light emitting layer. The scattering layer scatters the light.
Abstract:
Provided is a dual-mode display including a substrate, and a plurality of sub pixels on the substrate. Each of the sub pixels may include an emissive device, a reflective optical filter provided on a surface of the emissive device, and an optical shutter provided on other surface of the emissive device.
Abstract:
Provided is a method of fabricating an organic light emitting device that may form a light scattering layer having an irregular random structure at a low temperature. The method includes providing a substrate coated with a precursor layer; sequentially forming a metal layer and an organic layer on the precursor layer; performing a heat treatment of the organic layer to form an organic mask from the organic layer; patterning the metal layer by using the organic mask to form a metal mask; patterning the precursor layer by using the metal mask to form a light scattering layer having an irregular random structure; removing the metal mask and the organic mask; and sequentially stacking a planarization layer, a first electrode, an organic light emitting layer, a second electrode, and a passivation layer on the light scattering layer.
Abstract:
An apparatus which analyses a depth of a holographic image is provided. The apparatus includes an acquisition unit that acquires a hologram, a restoration unit that restores a three-dimensional holographic image by irradiating the hologram with a light source, an image sensing unit that senses a depth information image of the restored holographic image, and an analysis display unit that analyzes a depth quality of the holographic image, based on the sensed depth information image, and the image sensing unit uses a lensless type of photosensor.
Abstract:
Provided is a pressure sensitive display device including a sensing substrate, a reaction substrate provided on the sensing substrate, and spacers provided between the sensing substrate and the reaction substrate to space the sensing substrate apart from the reaction substrate. Here, the sensing substrate includes a flexible substrate and a touch electrode provided on one surface of the flexible substrate, which faces the reaction substrate. The reaction substrate includes a transparent substrate, a transparent electrode provided on one surface of the transparent substrate, which faces the sensing substrate, and a light emitting layer disposed on the transparent electrode.
Abstract:
Provided is a thin film transistor including a substrate, a first spacer on the substrate, a second spacer on the first spacer, a light shield layer intervened between the first spacer and the second spacer, a semiconductor layer on the second spacer, and a gate electrode on the semiconductor layer, wherein the light shield layer includes a plurality of inclined surfaces against a top surface of the substrate.
Abstract:
Disclosed are an organic light emitting device and a method of fabricating the same. The method of fabricating an organic light emitting device comprises forming a flexible substrate, and forming an organic light emitting layer on the flexible substrate. The forming the flexible substrate comprises, forming a first polymer pattern on a first metal layer, forming a second metal layer on an exposed portion of the first metal layer through the first polymer pattern, forming a gas barrier layer on the first polymer pattern and the second metal layer, forming a second polymer layer on the gas barrier layer, and removing the first metal layer to expose a surface of the first polymer pattern and a surface of the second metal layer.
Abstract:
Provided is a method of fabricating a light functional substrate. The method includes applying particles onto a surface of water contained in a container to form a monolayer constituted by the particles, immersing a substrate into the container, drawing the substrate out of the container to form patterns constituted by the particles on the substrate in a first direction, and forming a planarization film covering the patterns on the substrate.
Abstract:
An organic light emitting device is provided that includes a substrate; an embossing layer provided on the substrate; a planarization layer provided on the embossing layer; a first electrode provided on the planarization layer; an organic light emitting layer provided on the first electrode; and a second electrode provided on the organic light emitting layer. The planarization layer may include a first planarization layer provided on the embossing layer; and a second planarization layer provided on the first planarization layer. The embossing layer may have a refractive index ranging from about 1.3 to about 1.5. The planarization layer may include a first planarization layer having a surface roughness of about 10 nm to about 50 nm and a refractive index that ranges from about 1.8 to about 2.5; and a second planarization layer provided on the first planarization layer and having a surface roughness of less than about 10 nm.