Abstract:
Provided are a random number generating device and an operating the same. The random number generating device includes a particle detector, a pulse generator, a clock counter, and a random number converter. The particle detector detects particles emitted from a radioactive isotope. The pulse generator generates pulses corresponding to the particles. The clock counter counts the number of clocks during time intervals between the pulses and generates a plurality of count values. The random number converter adjusts a clock frequency, based on a minimum value and a maximum value of the plurality of count values and converts a target count value generated depending on the adjusted clock frequency into a random number.
Abstract:
Provided are a human body communication device and an operating method of the same. The human body communication device according to an embodiment of the inventive concept includes a first electrode, a second electrode, a transmitting circuit, a receiving circuit, a ground electrode, and a switch. The transmitting circuit generates a first signal in a transmitting mode and transmits the first signal to the first electrode. The receiving circuit receives a second signal from the first electrode in the receiving mode. The receiving circuit includes a differential amplifier that amplifies a difference between a voltage level of a first input terminal depending on the second signal and a voltage level of a second input terminal. The switch electrically connects the second electrode and the ground electrode in the transmitting mode, and electrically connects the second electrode and the second input terminal in the receiving mode.
Abstract:
The human body sensing device includes a contact sensing unit that includes a sensing electrode and a signal electrode, an activation module that senses a contact with a body through the sensing electrode when the sensing electrode and the signal electrode contact the body and outputs a wake-up signal in response to the sensing of the contact, and a human body communication unit that provides a ground voltage to the signal electrode and outputs a data signal to the signal electrode when the wake-up signal from the activation module is received.
Abstract:
Provided is a receiver. The receiver according to the inventive concept includes a first filter circuit, a second filter circuit, and an amplifier. The first filter circuit provides a first path for first frequency components below first cutoff frequency of input frequency components and passes second frequency components except for the first frequency components of the input frequency components through second path. The second filter circuit attenuates third frequency components below a second cutoff frequency of the second frequency components. The amplifier amplifies the second frequency components including the attenuated third frequency components.
Abstract:
Provided is an artificial intelligence system. The system includes a first sensor configured to generate a first sensing signal during a sensing time, a second sensor disposed adjacent to the first sensor and configured to generate a second sensing signal during the sensing time, a pre-processing unit configured to select valid data according to a magnitude of a differential signal generated based on a difference between the first sensing signal and the second sensing signal, and an artificial intelligence module configured to analyze the valid data to generate result data.
Abstract:
Provided is a capsule endoscope. The capsule endoscope includes: an imaging device configured to perform imaging on a digestive tract in vivo to generate an image; an artificial neural network configured to determine whether there is a lesion area in the image; and a transmitter configured to transmit the image based on a determination result of the artificial neural network.
Abstract:
Disclosed are an electric power conversion apparatus and method in an energy harvesting system. In more detail, it is possible to obtain the maximum electric power from the plurality of energy sources by selecting the connection structure between the source terminals or the connection structure between the source terminals and the collection terminals using the electrical characteristic values (for example, open voltage, short current, and internal impedance) of each source and adjusting the load impedance in the selected connection structure in the energy harvesting system.
Abstract:
Disclosed is a wake-up circuit including a preprocessing unit that generates a first signal by removing noise from an input signal, a comparison unit that generates a second signal based on the first signal and weight data, an output circuit that generates a power signal based on the second signal and an initialization signal, and a micro control unit (MCU) that generates the initialization signal based on a state signal received from the output circuit. The comparison unit includes a spike neuron network structure that generates the second signal by applying the weight data to the first signal. The output circuit supplies power to an external sensor node in response to the power signal.
Abstract:
Disclosed is an anomaly data detection device, which includes a sampler that generates session data including first to m-th sample data based on input data input during a first time interval, a spike signal generator that generates first to m-th spike signals respectively corresponding to the first to m-th sample data based on the session data, a spike neural network that detects whether an output spike fires in at least one output neuron from among output neurons based on the first to m-th spike signals and synaptic weights of each of the output neurons, and a detection circuit that generates a detection signal based on the number of output neurons firing the output spike, and each of the first to m-th spike signals is generated by converting feature information of the corresponding first to m-th sample data into a spike rate code.
Abstract:
Disclosed is an amplification circuit, which includes a first amplifier that receives an external signal and performs first band pass filtering on the external signal to output a first filter signal, and a second amplifier that receives the first filter signal and performs second band pass filtering on the first filter signal to output a second filter signal, and a frequency pass bandwidth of the second band pass filtering is narrower than a frequency pass bandwidth of the first band pass filtering.