Abstract:
Disclosed are a frame transmission method and a communication device performing the same. The communication device may transmit a null data packet (NDP)-announcement (NDP-A) including information on a plurality of communication devices participating in interference alignment and transmit an NDP including a common signal field and a common training field commonly applied to the plurality of communication devices.
Abstract:
A base station allocates a first frequency resource and a first time resource for first information that is included in a first physical channel and second information that is included in a second physical channel. The base station multi-transmits the first physical channel and the second physical channel through spatial multiplexing.
Abstract:
A method and apparatus for scheduling a beam in a mobile communication system are provided. A terminal receives signals through a plurality of switching beam directions, and receives a plurality of beams that are transmitted while performing beam switching in a transmission time interval (TTI) unit by a base station. The terminal selects a signal having largest intensity among received signals, and transmits an uplink scheduling request signal in a beam direction corresponding to the selected signal.
Abstract:
Disclosed is a method and apparatus for communication in a millimeter band communication system. In a case in which a first terminal obtains a list including members of a cooperative group in which terminals receive a service with the same beam as a first terminal's beam, the first terminal informs a second terminal, corresponding to a member of the list, of communication link failure when the failure occurs, and requests a cooperative service. After that, the first terminal receives information on the service from a base station through the second terminal.
Abstract:
Disclosed is a protocol for transmitting data through cooperation between access points in an overlapped basic service set (OBSS) environment. A cooperative beamforming communication method may include negotiating, by a first access point, a cooperative transmit beamforming with a second access point having an OBSS area with the first access point; transmitting, by the first access point, a clear-to-send (CTS) to the second access point; and performing, by the first access point, the cooperative transmit beamforming with the second access point during a cooperative transmit beamforming duration determined through the negotiation after a predetermined time interval is elapsed, when transmission of the CTS is completed.
Abstract:
The present application relates to a method of generating a downlink frame. The method of generating the downlink frame includes: generating a first short sequence and a second short sequence indicating cell group information; generating a first scrambling sequence and a second scrambling sequence determined by the primary synchronization signal; generating a third scrambling sequence determined by the first short sequence and a fourth scrambling sequence determined by the second short sequence; scrambling the short sequences with the respective scrambling sequences; and mapping the secondary synchronization signal that includes the first short sequence scrambled with the first scrambling sequence, the second short sequence scrambled with the second scrambling sequence and the third scrambling sequence, the second short sequence scrambled with the first scrambling sequence and the first short sequence scrambled by the second scrambling sequence and the fourth scrambling sequence to a frequency domain.
Abstract:
A method and apparatus for allocating radio resources for a control channel, and a method of receiving the control channel are disclosed. According to an aspect, the method of allocating radio resources includes: recognizing one or more reference signals included in an enhanced control channel positioned in a resource region for downlink data; dynamically setting a resource element group including one or more resource elements that are to be allocated to the enhanced control channel, according to the one or more reference signals; and determining one or more resource elements available for the enhanced control channel among the resource elements included in the set resource element group, and allocating the one or more resource elements to the enhanced control channel.
Abstract:
Disclosed are a method for generating a random access signal of a machine type communication (MTC) device using a narrow bandwidth, and an MTC device. The method generates a random access signal by allocating a position in a frequency domain of a random access signal dedicated to the MTC device, that is, a position of a frequency for transmission of a random access preamble, to a center position of a base station system bandwidth, or by shifting a center frequency of the MTC device to a position of a random access frequency allocated for a legacy LTE terminal by a base station.
Abstract:
Disclosed are a frame transmission method using a selective beamforming and a communication apparatus to perform the frame transmission method. The communication apparatus may determine a beamforming matrix based on classification information in which a plurality of subcarriers used for communication is classified into a plurality of frequency units, may map a long training field (LTF) sequence to the beamforming matrix, and transmit a beamforming training (BF-T) frame including the mapped LTF sequence to a plurality of stations, may receive, from the plurality of stations having receiving the BF-T frame, feedback information generated based on a reception strength of the BF-T frame, and may allocate frequency units to data frames to be transmitted to the plurality of stations based on the feedback information, and transmit the data frames using the allocated frequency units. The reception strength of the BF-T frame may be determined at each station for each frequency unit.
Abstract:
The present application relates to a method of generating a downlink frame. The method of generating the downlink frame includes: generating a first short sequence and a second short sequence indicating cell group information; generating a first scrambling sequence and a second scrambling sequence determined by the primary synchronization signal; generating a third scrambling sequence determined by the first short sequence and a fourth scrambling sequence determined by the second short sequence; scrambling the short sequences with the respective scrambling sequences; and mapping the secondary synchronization signal that includes the first short sequence scrambled with the first scrambling sequence, the second short sequence scrambled with the second scrambling sequence and the third scrambling sequence, the second short sequence scrambled with the first scrambling sequence and the first short sequence scrambled by the second scrambling sequence and the fourth scrambling sequence to a frequency domain.