Abstract:
A projection display system includes a spatial modulator that is controlled to compensate for flare in a lens of the projector. The spatial modulator increases achievable intra-frame contrast and facilitates increased peak luminance without unacceptable black levels. Some embodiments provide 3D projection systems in which the spatial modulator is combined with a polarization control panel.
Abstract:
A locally dimmed display has a spatial light modulator illuminated by a light source. The spatial light modulator is illuminated with a low resolution version of a desired image. The illumination may comprise a series of lighting elements that vary smoothly from one element to another at the spatial light modulator.
Abstract:
A locally dimmed display has a spatial light modulator illuminated by a light source. The spatial light modulator is illuminated with a low resolution version of a desired image. The illumination may comprise a series of lighting elements that vary smoothly from one element to another at the spatial light modulator.
Abstract:
In a method to generate a tone-mapped image from a high-dynamic range image (HDR), an input HDR image is converted into a logarithmic domain and a global tone-mapping operator generates a high-resolution gray scale ratio image from the input HDR image. Based at least in part on the high-resolution gray scale ratio image, at least two different gray scale ratio images are generated and are merged together to generate a local multiscale gray scale ratio image that represents a weighted combination of the at least two different gray scale ratio images, each being of a different spatial resolution level. An output tone-mapped image is generated based on the high-resolution gray scale image and the local multiscale gray scale ratio image.
Abstract:
A locally dimmed display has a spatial light modulator illuminated by a light source. The spatial light modulator is illuminated with a low resolution version of a desired image. The illumination may comprise a series of lighting elements that vary smoothly from one element to another at the spatial light modulator.
Abstract:
Dual modulator displays are disclosed incorporating a phosphorescent plate interposed in the optical path between a light source modulation layer and a display modulation layer. Spatially modulated light output from the light source modulation layer impinges on the phosphorescent plate and excites corresponding regions of the phosphorescent plate which in turn emit light having different spectral characteristics than the light output from the light source modulation layer. Light emitted from the phosphorescent plate is received and further modulated by the display modulation layer to provide the ultimate display output.
Abstract:
Apparatus and methods are provided that employ one or more of a variety of techniques for reducing the time required to display high resolution images on a high dynamic range display having a light source layer and a display layer. In one technique, the image resolution is reduced, an effective luminance pattern is determined for the reduced resolution image, and the resolution of the effective luminance pattern is then increased to the resolution of the-display layer. In another technique, the light source layer's point spread function is decomposed into a plurality of components, and an effective luminance pattern is determined for each component. The effective luminance patterns are then combined to produce a total effective luminance pattern. Additional image display time reduction techniques are provided.
Abstract:
High dynamic range 3D images are generated with relatively narrow dynamic range image sensors. Input frames of different views may be set to different exposure settings. Pixels in the input frames may be normalized to a common range of luminance levels. Disparity between normalized pixels in the input frames may be computed and interpolated. The pixels in the different input frames may be shifted to, or stay in, a common reference frame. The pre-normalized luminance levels of the pixels may be used to create high dynamic range pixels that make up one, two or more output frames of different views. Further, a modulated synopter with electronic mirrors is combined with a stereoscopic camera to capture monoscopic HDR, alternating monoscopic HDR and stereoscopic LDR images, or stereoscopic HDR images.
Abstract:
Dual modulator displays are disclosed incorporating a phosphorescent plate interposed in the optical path between a light source modulation layer and a display modulation layer. Spatially modulated light output from the light source modulation layer impinges on the phosphorescent plate and excites corresponding regions of the phosphorescent plate which in turn emit light having different spectral characteristics than the light output from the light source modulation layer. Light emitted from the phosphorescent plate is received and further modulated by the display modulation layer to provide the ultimate display output.
Abstract:
Methods and apparatus according to various aspects take as input image data in a lower-dynamic-range (LDR) format and produce as output enhanced image data having a dynamic range greater than that of the input image data (i.e. higher-dynamic range (HDR) image data). In some embodiments, the methods are applied to video data and are performed in real-time (i.e. processing of video frames to enhance the dynamic range of the video frames is completed at least on average at the frame rate of the video signal).