Abstract:
A mask for microlithography comprises a substrate; a first pattern area on the substrate, the first pattern area comprising a first pattern extending over a first length in a mask scanning direction and a first width in a direction perpendicular to the mask scan direction; and a second pattern area on the substrate adjacent to the first pattern area in the mask scanning direction, the second pattern area comprising a second pattern extending over a second length in the mask scanning direction and a second width identical to the first width in the direction perpendicular to the mask scan direction.
Abstract:
An illumination system of a microlithographic projection exposure apparatus comprises an optical raster plate having a light entrance surface. An irradiance distribution on the light entrance surface determines an angular light distribution of projection light when it impinges on a mask to be illuminated. The illumination system further comprises a control unit and a spatial light modulator which produces on the light entrance surface of the optical raster plate a plurality of light spots whose positions can be varied. At least some of the light spots have, along a reference direction (X), a spatial irradiance distribution comprising a portion in which the irradiance varies periodically with a spatial period P.
Abstract:
A microlithography optical system includes a projection objective and an illumination system that includes a temperature compensated polarization-modulating optical element. The temperature compensated polarization-modulating optical element includes a first polarization-modulating optical element of optically active material, the first polarization-modulating optical element having a first specific rotation with a sign. The temperature compensated polarization-modulating optical element includes also includes a second polarization-modulating optical element of optically active material, the second polarization-modulating optical element having a second specific rotation with a sign opposite to the sign of the first specific rotation.
Abstract:
An image sensor for a position sensor apparatus for ascertaining a position of at least one mirror of a lithography apparatus includes: a plurality of integrated optical waveguides; a plurality of incoupling areas; a multiplexer apparatus; and an image reconstruction apparatus.
Abstract:
In an optical system for a projection exposure apparatus, the angle space of the illumination radiation of the projection optical unit at the reticle is twice as large in a first direction as the angle space of the illuminating radiation of the illuminating optical unit.
Abstract:
In an optical system for a projection exposure apparatus, the angle space of the illumination radiation of the projection optical unit at the reticle is twice as large in a first direction as the angle space of the illuminating radiation of the illuminating optical unit.
Abstract:
An illumination optical unit for projection lithography illuminates an object field. The illumination optical unit has an optical rod with an entrance area and an exit area for illumination light. The optical rod is configured so that the illumination light is mixed and homogenized at lateral walls of the optical rod by multiple in-stances of total internal reflection. At least one correction area serves to correct a field dependence of an illumination angle distribution when illuminating the object field. The correction area is disposed in the region of the exit area of the optical rod. This can result in an illumination optical unit, in which an unwanted field dependence of a specified illumination angle distribution is reduced or entirely avoided, even in the case of illumination angle distributions with illumination angles deviating extremely from a normal incidence on the object field.
Abstract:
Illumination optical unit for illuminating an object field in a projection exposure apparatus, comprising a first facet mirror with a structure, which has a spatial frequency of at least 0.2 mm−1 in at least one direction, and a second facet mirror, comprising a multiplicity of facets, wherein the facets are respectively provided with a mechanism for damping spatial frequencies of the structure of the first facet mirror.
Abstract:
A microlithographic illumination unit for post-exposure of a photoresist provided on a wafer in a microlithography process, has at least one light source and a light-guiding and light-mixing element for coupling the electromagnetic radiation generated by the light source into the photoresist. This light-guiding and light-mixing element has a first pair of mutually opposite side faces, the maximum spacing of which has a first value. Multiple reflections of the electromagnetic radiation on these side faces take place, wherein the light-guiding and light-mixing element has a second pair of mutually opposite side faces, the maximum spacing of which has a second value. The maximum extent of the light-guiding and light-mixing element in the light propagation direction of the electromagnetic radiation has a third value. This third value is greater than the first value and is smaller than the second value.
Abstract:
An optical waveguide serves for guiding illumination light. The waveguide has a waveguide main body for guiding the illumination light between a main body entrance region and a main body exit region. At least one coupling-out device is provided in the main body exit region. Via the coupling-out device, at least one coupling-out illumination light partial beam is coupled out from the illumination light emerging from the waveguide main body. This is done such that the coupling-out illumination light partial beam can be separated from the rest of the illumination light beam emerging from the waveguide main body. This results in a waveguide having improved possibilities for use when guiding illumination light.