Abstract:
A method for forming ion-exchanged regions in a glass article by contacting an ion source with at least one surface of the glass article, forming a first ion-exchanged region in the glass article by heating a first portion of the glass article with a laser, and forming a second ion-exchanged region in the glass article. Characteristics of the first ion-exchanged region may be different from characteristics of the second ion-exchanged region. A depth of the ion-exchanged region may be greater than 1 μm. A glass article including a first ion-exchanged region, and a second ion-exchanged region having different characteristics from the first ion-exchanged region. The thickness of the glass article is less than or equal to about 0.5 mm.
Abstract:
A via includes a substrate and a porous electrically conductive material. The substrate includes a first surface and a second surface opposite to the first surface. The substrate includes a through-hole extending from the first surface to the second surface. The porous electrically conductive material extends through the through-hole. The porous electrically conductive material includes a first porosity in a central region of the through-hole and a second porosity less than the first porosity proximate the first surface and the second surface of the substrate.
Abstract:
A ceramic waveguide includes: a doped metal oxide ceramic core layer; and at least one cladding layer comprising the metal oxide surrounding the core layer, such that the core layer includes an erbium dopant and at least one rare earth metal dopant being: lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, thulium, ytterbium, lutetium, scandium, or oxides thereof, or at least one non-rare earth metal dopant comprising zirconium or oxides thereof. Also included is a quantum memory including: at least one doped polycrystalline ceramic optical device with the ceramic waveguide and a method of fabricating the ceramic waveguide.
Abstract:
Display tiles comprising pixel elements on a first surface of a substrate connected by an electrode, a driver located opposite the first surface, and a connector wrapped around an edge surface of the substrate connecting the driver to the pixel elements. Displays comprised of display tiles and methods of manufacturing display tiles and displays are also disclosed.
Abstract:
A ceramic waveguide includes: a doped metal oxide ceramic core layer; and at least one cladding layer comprising the metal oxide surrounding the core layer, such that the core layer includes an erbium dopant and at least one rare earth metal dopant being: lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, thulium, ytterbium, lutetium, scandium, or oxides thereof, or at least one non-rare earth metal dopant comprising zirconium or oxides thereof. Also included is a quantum memory including: at least one doped polycrystalline ceramic optical device with the ceramic waveguide and a method of fabricating the ceramic waveguide.
Abstract:
A method of performing ion exchange of a thin, flexible glass substrate having an average thickness equal to or less than about 0.3 mm to chemically strengthen the glass substrate is disclosed. The chemically strengthened glass substrate comprises a first compressive stress layer having a first depth of layer, and a second compressive stress layer having a second depth of layer, the first and second stress layers being separated by a layer of tensile stress. A laminated article comprising the chemically strengthened glass substrate is also described.
Abstract:
Embodiments are related to systems and methods for forming vias in a substrate, and more particularly to systems and methods for reducing substrate surface disruption during via formation.
Abstract:
A flexible substrate are disclosed comprising an amorphous inorganic composition, wherein the substrate has a thickness of less than about 250 μm and has at least one of: a) a brittleness ratio less than about 9.5 (μm)−1/2, or b) a fracture toughness of at least about 0.75 MPa·(m)1/2. Electronic devices comprising such flexible devices are also disclosed. Also disclosed is a method for making a flexible substrate comprising selecting an amorphous inorganic material capable of forming a substrate having a thickness of less than about 250 μm and having at least one of: a) a brittleness ratio of less than about 9.5 (μm)−1/2, or b) a fracture toughness of at least about 0.75 MPa·(m)1/2; and then forming a substrate from the selected inorganic material.
Abstract:
A method of performing ion exchange of a thin, flexible glass substrate having an average thickness equal to or less than about 0.3 mm to chemically strengthen the glass substrate is disclosed. The chemically strengthened glass substrate comprises a first compressive stress layer having a first depth of layer, and a second compressive stress layer having a second depth of layer, the first and second stress layers being separated by a layer of tensile stress. A laminated article comprising the chemically strengthened glass substrate is also described.
Abstract:
A flexible substrate are disclosed comprising an amorphous inorganic composition, wherein the substrate has a thickness of less than about 250 μm and has at least one of: a) a brittleness ratio less than about 9.5 (μm)−1/2, or b) a fracture toughness of at least about 0.75 MPa.(m)1/2. Electronic devices comprising such flexible devices are also disclosed. Also disclosed is a method for making a flexible substrate comprising selecting an amorphous inorganic material capable of forming a substrate having a thickness of less than about 250 μm and having at least one of: a) a brittleness ratio of less than about 9.5 (μm)−1/2, or b) a fracture toughness of at least about 0.75 MPa.(m)1/2; and then forming a substrate from the selected inorganic material.