Abstract:
Systems, methods, and non-transitory computer-readable storage media are disclosed for detecting vulnerabilities in real-time during execution of a process or an application. In one example, a device may have one or more memories storing computer-readable instructions and one or more processors configured to execute the computer-readable instructions to obtain real-time process information associated with a process executing in an endpoint. The device can then determine package information for a package associated with the process based on the process information. The device can then identify at least one vulnerability associated with the package information using a database of vulnerabilities stored on a backend component of the network. The backend component may have a database of vulnerabilities for packages.
Abstract:
The disclosed technology relates to intent driven network management. A system is configured to maintain an inventory store comprising records for a set of network entities in a network, wherein each network entity in the set of network entities is associated with a record in the inventory store. The system receives a user intent statement comprising an action and a flow filter representing network data flows on which the action is to be applied and queries, based on the flow filter, the inventory store to identify a plurality of network entities in the set of network entities to which the user intent statement applies. The system generates a plurality of network policies that implement the user intent statement based on the plurality of network entities and the action and enforces the plurality network policies.
Abstract:
Systems, methods, and computer-readable media for annotating process and user information for network flows. In some embodiments, a capturing agent, executing on a first device in a network, can monitor a network flow associated with the first device. The first device can be, for example, a virtual machine, a hypervisor, a server, or a network device. Next, the capturing agent can generate a control flow based on the network flow. The control flow may include metadata that describes the network flow. The capturing agent can then determine which process executing on the first device is associated with the network flow and label the control flow with this information. Finally, the capturing agent can transmit the labeled control flow to a second device, such as a collector, in the network.
Abstract:
An example method includes detecting, using sensors, packets throughout a datacenter. The sensors can then send packet logs to various collectors which can then identify and summarize data flows in the datacenter. The collectors can then send flow logs to an analytics module which can identify the status of the datacenter and detect an attack.
Abstract:
The disclosed technology relates to a network agent for reporting to a network policy system. A network agent includes an agent enforcer and an agent controller. The agent enforcer is configured to implementing network policies on the system, access data associated with the implementation of the network policies on the system, and transmit, via an interprocess communication, the data to the agent controller. The agent controller is configured to generate a report including the data and transmit the report to a network policy system.
Abstract:
An example method includes detecting, using sensors, packets throughout a datacenter. The sensors can then send packet logs to various collectors which can then identify and summarize data flows in the datacenter. The collectors can then send flow logs to an analytics module which can identify the status of the datacenter and detect an attack.
Abstract:
Methods, systems, and computer readable media are provided for determining, in a virtualized network system, a relationship of a sensor relative to other sensors. In a virtualized computing system in which a plurality of software sensors are deployed and in which there are one or more traffic flows, captured network data is received from the plurality of sensors, the captured network data from a given sensor of the plurality of sensors indicating one or more traffic flows detected by the given sensor. The received captured network data is analyzed to identify, for each respective sensor, a first group of sensors, a second group of sensors, and a third group of sensors, wherein all traffic flows observed by the first group of sensors are also observed by the second group of sensors, and all traffic flows observed by the second group of sensors are also observed by the third group of sensors. For each respective sensor, a location of each respective sensor relative to other sensors within the virtualized computing system is determined based upon whether the respective sensor belongs to the first group of sensors, the second group of sensors, or the third group of sensors.
Abstract:
An example method includes calculating latency bounds for communications from two sensors to a collector (i.e., maximum and minimum latencies). After the collector receives an event report from the first sensor and an event report form the second sensor, the collector can determine, using the latency bounds, whether one event likely preceded the other.
Abstract:
A method includes capturing first data associated with a first packet flow originating from a first host using a first capture agent deployed at the first host to yield first flow data, capturing second data associated with a second packet flow originating from the first host from a second capture agent deployed on a second host to yield second flow data and comparing the first flow data and the second flow data to yield a difference. When the difference is above a threshold value, the method includes determining that the second packet flow was transmitted by a component that bypassed an operating stack of the first host or a packet capture agent at the device to yield a determination, detecting that hidden network traffic exists, and predicting a malware issue with the first host based on the determination.
Abstract:
Systems, methods, and computer-readable media for managing compromised sensors in multi-tiered virtualized environments. In some embodiments, a system can receive, from a first capturing agent deployed in a virtualization layer of a first device, data reports generated based on traffic captured by the first capturing agent. The system can also receive, from a second capturing agent deployed in a hardware layer of a second device, data reports generated based on traffic captured by the second capturing agent. Based on the data reports, the system can determine characteristics of the traffic captured by the first capturing agent and the second capturing agent. The system can then compare the characteristics to determine a multi-layer difference in traffic characteristics. Based on the multi-layer difference in traffic characteristics, the system can determine that the first capturing agent or the second capturing agent is in a faulty state.