Abstract:
The invention relates to a process for producing polypropylene bottles comprising, forming a polypropylene preform by injection molding, cooling the polypropylene preform to ambient temperature, preheating the preform article, wherein the temperature around the circumference of the preform article has a temperature delta of less than 5 degrees Celsius at any height along the preform, inserting the preheated preform into a cavity of a stretch blow molding machine, and stretch blow molding the preform into a polypropylene bottle at a rate of at least 1000 bottles per cavity per hour, wherein the polypropylene bottle has a wall thickness delta at any given height along the bottle of less than 30% of the average wall thickness at the given height. The invention also relates to the polypropylene bottle made from this process.
Abstract:
A turbine blade for use in a gas turbine engine is provided. The turbine blade includes an airfoil portion having a tip end, a shroud attached to the tip end, which shroud has an outer surface, and a knife edge attached to an outer surface of the shroud. The knife edge has a pair of cutter blades disposed substantially over an axis of the airfoil portion.
Abstract:
A stapler including a staple support device. The stapler includes a base, a magazine for holding staples having a front portion, and a staple driver for driving staples out of the magazine in a staple driving plane. The stapler also includes a nose piece coupled to the front portion of the magazine and a support device coupled to the nose piece. Staples in the magazine are supported on an outer surface by the magazine and on an inner surface by the support device.
Abstract:
A turbine blade having improved cooling characteristics is provided. The turbine blade has an airfoil portion having a span, and at least one cooling passageway in the airfoil portion extending from a root portion of the airfoil portion to a tip portion of the airfoil portion. A plurality of turbulation promotion devices are placed in the at least one cooling passageway. The turbulation promotion devices have a P/e ratio which varies along the span of the airfoil portion, where P is the pitch between adjacent turbulation promotion devices and e is the height of the turbulation promotion devices.
Abstract:
Specific low density polyethylene articles that exhibit improved physical characteristics and other benefits over previously made articles produced by less efficient means are provided. Such articles require the presence of saturated or unsaturated bicyclic dicarboxylate nucleating agents that impart increased crystallization temperatures, permit lower manufacturing cycle times, and, most importantly, cause a drastic reduction in warpage at quick cooling times during production. These resultant articles thus can be produced more efficiently with reliable low-warpage characteristics.
Abstract:
A composite material (20) comprises a matrix layer (21) having a plurality of interspersed reinforcing whiskers (23) and a plurality of continuous reinforcing fibers (25) embedded within the matrix layer (21). The preferred embodiment includes a matrix layer (21) which may be a ceramic, intermetallic or metallic material having interspersed reinforcing whiskers (23) upon which a second layer of the matrix (24) having embedded continuous reinforcing fibers (25) is placed, and a third layer (22) of the matrix material having the interspersed reinforcing whiskers (23) on the second layer (24). The composite exhibits improved fracture toughness due to the crack deflection ability of whiskers (23) and crack bridging and fiber pull out due to continuous fibers (25) and minimizes creep associated with known ceramic and intermetallic composites.
Abstract:
Systems and methods for docking portable electronic devices. A master device may be docked to a slave device to control the operation of the slave device. The slave device may have a form factor different than that of the master device. For example, the slave device may be a tablet and the master device may be a handheld device such as a smart phone. The slave device may include a retention mechanism to retain the master device in a docked position with respect to the slave device. When in the docked position, the master device may be in operative communication with one or more hardware components of the slave device to control the operation thereof. The slave device may lack the ability to exploit the full functionality of the one or more hardware components of the slave device without communication with the master device.
Abstract:
A robotic vehicle (10,100,150A,150B150C,160,1000,1000A, includes a chassis (20,106,152,162) having front and rear ends (20A,152A,20B,152B) and supported on right and left driven tracks (34,44,108,165). Right and left elongated flippers (50,60,102,154,164) are disposed on corresponding sides of the chassis and operable to pivot. A linkage (70,156,166) connects a payload deck assembly (D1,D2,D3,80,158,168,806), configured to support a removable functional payload, to the chassis. The linkage has a first end (70A) rotatably connected to the chassis at a first pivot (71), and a second end (70B) rotatably connected to the deck at a second pivot (73). Both of the first and second pivots include independently controllable pivot drivers (72,74) operable to rotatably position their corresponding pivots (71,73) to control both fore-aft position and pitch orientation of the payload deck (D1,D2,D3,80,158,168,806) with respect to the chassis (20,106,152,162).
Abstract:
A robotic vehicle is disclosed, which is characterized by high mobility, adaptability, and the capability of being remotely controlled in hazardous environments. The robotic vehicle includes a chassis having front and rear ends and supported on right and left driven tracks. Right and left elongated flippers are disposed on corresponding sides of the chassis and operable to pivot. A linkage connects a deck system to the chassis. The deck system includes a deck base and a payload deck configured to support a removable functional payload. The linkage has a first end rotatably connected to the chassis at a first pivot, and a second end rotatably connected to the deck at a second pivot. Both of the first and second pivots include independently controllable pivot drivers operable to rotatably position their corresponding pivots to control both fore-aft position and pitch orientation of the payload deck with respect to the chassis.
Abstract:
A robotic vehicle is disclosed, which is characterized by high mobility, adaptability, and the capability of being remotely controlled in hazardous environments. The robotic vehicle includes a chassis having front and rear ends and supported on right and left driven tracks. Right and left elongated flippers are disposed on corresponding sides of the chassis and operable to pivot. A linkage connects a payload deck, configured to support a removable functional payload, to the chassis. The linkage has a first end rotatably connected to the chassis at a first pivot, and a second end rotatably connected to the deck at a second pivot. Both of the first and second pivots include independently controllable pivot drivers operable to rotatably position their corresponding pivots to control both fore-aft position and pitch orientation of the payload deck with respect to the chassis.