Abstract:
The embodiments of the invention provide an array substrate, a method for manufacturing the same and a display device, relate to the field of display technology, and can reduce the color cast phenomenon of the display device, and improve the display effect. The array substrate comprises a plurality of pixel units which are arranged in an array, each of the pixel units comprises a plurality of sub-pixel units, the width of each of the sub-pixel units is equal, each of the sub-pixel units corresponds to one first electrode, the first electrode comprises a plurality of strip-shaped structures which are arranged at an equal interval, and intervals of the strip-shaped structures of the first electrodes corresponding to different sub-pixel units in each of the pixel units are not completely equal; any of the sub-pixel units meets Q·W+(Q−1)D
Abstract:
The present invention provides an array substrate, its manufacturing method, and a display device. The array substrate comprises a plurality of grid lines a plurality of data lines, and pixel regions defined by every two adjacent grid Fines and every two adjacent data lines. The pixel region is provided with a common electrode, a pixel electrode and a thin film transistor. The common electrode includes a first common electrode and a second common electrode which are powered independently. A projection of the first common electrode onto a layer where the data lines are located covers the data line, and a projection of the second common electrode onto a layer where the pixel electrode is located falls on the pixel electrode.
Abstract:
Embodiments of the present disclosure provide an array substrate comprising a plurality of gate lines, a plurality of data lines, and pixel regions each of which is defined by intersecting one gate line and two neighboring data lines among the plurality of gate lines and the plurality of data lines wherein two thin film transistors (TFTs) are formed at the intersections between the gate line and the two neighboring data lines in each pixel region, a first pixel electrode and a second pixel electrode are alternately arranged in each pixel region. A first thin film transistor of the two thin film transistors is coupled to the first pixel electrode, a second thin film transistor of the two thin film transistors is coupled to the second pixel electrode. The two neighboring data lines participating in defining a pixel region comprise a first data line coupling to the first thin film transistor and a second data line coupling to the second thin film transistor. Voltages having the same absolute value and opposite polarities are applied to the first pixel electrode and the second pixel electrode respectively via the first thin film transistor and the second thin film transistor.
Abstract:
Embodiments of the present invention disclose a liquid crystal display device, comprising: a first substrate, including a base substrate, and gate lines and data lines, formed on the base substrate and crossing each other to define a plurality of pixel structures; a second substrate, cell-assembled with the first substrate to form a liquid crystal cell; and a liquid crystal layer, filled between the first substrate and the second substrate, wherein each of the plurality of pixel structures comprises: the base substrate; a common electrode, formed on the base substrate; a first insulating layer, formed on the common electrode; a plurality of strip-shaped pixel electrodes, formed on the first insulating layer, wherein the plurality of strip-shaped pixel electrodes include a plurality of positive electrodes and negative electrodes which are disposed alternately.
Abstract:
A shift register, a driving circuit, a driving method and a display device are provided. The shift register includes: an input circuit configured to provide a first voltage or a second voltage to a first node and a light-emitting control signal terminal under a control of a first input signal and a second input signal; a processing circuit configured to provide the first voltage or the second voltage to a second node under a control of the first input signal and a potential of the first node; and an output circuit configured to provide the first voltage or the second voltage to a first output scanning signal terminal under control of a first clock signal and the potential of the first node, and provide the first voltage or the second voltage to a second output scanning signal terminal under a control of a potential of the first output scanning signal terminal.
Abstract:
The present disclosure relates to a display panel and a terminal device. The display panel includes a display region. At least a part of the display region is a transparent region. The transparent region has a plurality of pixel rows distributed along a column direction, and each of the plurality of pixel rows includes pixels and transparent portions arranged in a row direction. The pixel rows include first pixel rows and second pixel rows, transparent portions each arranged between two adjacent pixels in each of the first pixel rows are first transparent portions, and transparent portions each arranged between two adjacent pixels in each of the second pixel rows are second transparent portions. A width of each of the first transparent portions in the row direction is greater than a width of each of the second transparent portions in the row direction.
Abstract:
A light emitting substrate is provided. The light emitting substrate includes a plurality of subpixels. A respective subpixel of the plurality of subpixels includes n1 number of main light emitting elements; n1 number of main pixel driving circuits configured to drive light emission in the n1 number of main light emitting elements; n2 number of auxiliary light emitting elements; n2 number of auxiliary pixel driving circuits configured to drive light emission in the n2 number of auxiliary light emitting elements; n1≥1, and n2≥1. A respective main pixel driving circuit of the n1 number of main pixel driving circuits includes a first driving transistor. A respective auxiliary pixel driving circuit of the n2 number of auxiliary pixel driving circuits includes a second driving transistor. Threshold voltage levels of the first driving transistor and the second driving transistor are substantially the same
Abstract:
A display method is provided. The display method includes providing a display panel having a plurality of subpixels, a respective subpixel of the plurality of subpixels including a first area, n1 number of second areas, and n2 number of third areas, the first area being between the n1 number of second areas and the n2 number of third areas, n1≥1, and n2≥1; for displaying a first frame of image, controlling light emission of the respective subpixel to be limited in the first area, m1 number of the n1 number of second areas, and m2 number of the n2 number of third areas; and for displaying a second frame of image, controlling light emission of the respective subpixel to be limited in the first area, ml′ number of the n1 number of second areas, and m2′ number of the n2 number of third areas.
Abstract:
The present disclosure provides a gate driving circuit, a method of driving a gate driving circuit, and a display panel. The gate driving circuit includes a plurality of driving units connected in cascade. Each driving unit includes: N shift register units; and a mode control circuit connected to the N shift register units, wherein the mode control circuit is configured to receive a control signal for the driving unit, and connect the N shift register units in one of a plurality of resolution modes under the control of the control signal.
Abstract:
A circuit for driving a pixel includes a driving transistor having a first end connected to a first node, a control end connected to a second node, and a second end connected to a third node; a writing circuit connected to a first scanning signal and the first node and configured to transmit a data signal to the first node; a reset circuit connected to a second scanning signal and configured to transmit a reference signal to the second node; a compensation circuit connected to a compensation control signal and configured to put through a connection between the second end and the control end of the driving transistor in response to the compensation control signal, wherein the compensation control signal is different from the first scanning signal and the second scanning signal; and an energy storage circuit connected between a first power end and the second node.