Abstract:
A flexible display panel includes a plurality of light-emitting regions separated from each other, a respective one of the plurality of light-emitting regions including a light emitting element and an encapsulating structure encapsulating the light emitting element; and a plurality of dummy regions connecting the plurality of light-emitting regions, a respective one of the plurality of light-emitting regions having a larger thickness than a respective dummy region and including a plurality of driving wires. The flexible display panel further includes a detecting wire in the plurality of dummy regions and the plurality of light emitting regions.
Abstract:
An OLED panel and a manufacturing method thereof are provided. The panel includes a substrate, a plurality of OLED devices disposed on the substrate and an auxiliary cathode. The OLED devices include a cathode and have light emitting areas respectively. The auxiliary cathode is disposed on the cathode of the OLED devices in electrical contact with the cathode and the auxiliary cathode is at least partially located in the light emitting areas of the OLED devices. A material of the auxiliary cathode is a transparent conductive material.
Abstract:
The present disclosure relates to a packaging device and a packaging method. The packaging device includes a first platform and a second platform facing the first platform. The first platform moves back and forth towards or away from the second platform. The first platform is provided with a first electromagnetic device. The packaging device further includes at least one patch which is capable of being adsorbed by the first electromagnetic device. One side of the patch is attached to the first platform, and the other side of the patch is configured to be attached to a substrate to be packaged. The substrate is detachably fixed onto the first platform.
Abstract:
The present invention discloses a display panel, a manufacturing method thereof and a display device. The display panel comprises a first substrate divided into a display area and a non-display area surrounding the display area, a plurality of sub-pixel units are provided on a part of the first substrate corresponding to the display area, a photo spacer is provided between two adjacent sub-pixel units and comprises a base and a plurality of protruding structures provided on the base, and the base is made from material including In+ ions which are replaceable with H+ ions. For the display panel, the photo spacers are manufactured using Haze phenomenon generated by contacting ITO thin film with ionized H2, so as to provide support between the encapsulation substrate and the evaporated substrate encapsulated by frit seal and effectively protect the OLED devices from damage, and therefore, the display panel has better performance.
Abstract:
The present invention provided an OLED device, a method for packaging the same, and a display device. With the solution of the present invention, it is not necessary to dispose a recess in the package substrate and the cost of production and thickness of the package substrate are decreased. The OLED device comprises a package substrate and an array substrate a surface of which is formed thereon with an OLED structure. Edges of the array substrate and the package substrate are bonded by a frame sealant, and the OLED structure is positioned between the array substrate and the package substrate. The OLED device further comprises a moisture barrier layer on a surface of the OLED structure for block moisture and oxygen and a desiccant layer positioned between the moisture layer and the package substrate, the desiccant layer including desiccant particles for absorbing moisture and oxygen within the OLED device.
Abstract:
A display substrate and a display device relate to the technical field of displaying. The display substrate includes a plurality of display units spaced apart from each other and a plurality of connecting units, the plurality of connecting units being connected between two adjacent display units; the plurality of connecting units including: two connecting units arranged along a first direction, wherein the first direction is parallel to a stretching direction of the display substrate; wherein the two connecting units arranged along the first direction are axisymmetric about a first reference line, so that the plurality of connecting units arranged along a second direction have a same deformation amount in a stretching state, the second direction is perpendicular to the stretching direction, and an extension direction of the first reference line is parallel to the second direction.
Abstract:
The present disclosure provides a display substrate and a display device, wherein the display substrate includes a substrate body, the substrate body includes a plurality of island portions spaced apart from each other, a plurality of connection areas connecting the plurality of island portions, and a penetration portion penetrating the substrate body among the plurality of connection areas, at least a portion of each edge of the island portion is connected with the connection area; each island portion is respectively provided with a plurality of pixel groups, each pixel group includes a first pixel unit and a second pixel unit which are adjacently arranged along a first direction, an arrangement of the sub-pixels in the first pixel unit is different from an arrangement of the sub-pixels in the second pixel unit, the plurality of pixel groups form an n×m arrangement on the island portion and cover the whole island portion.
Abstract:
The present disclosure provides a color filter substrate and a method for manufacturing the same, and a display device, and the color filter substrate includes a base substrate, a black matrix and a color filter layer located on the base substrate, a quantum dot layer located on a side of the color filter layer away from the base substrate, a barrier layer located on a side of the black matrix away from the base substrate, and a first inorganic layer, and the first inorganic layer at least includes: a first portion located between the color filter layer and the quantum dot layer; a second portion located on the base substrate and between the quantum dot layer and the barrier layer; and a third portion located on a side of the barrier layer away from the base substrate.
Abstract:
The present disclosure relates to a display device and a method of manufacturing the same. The display device includes: a plurality of display units, each display unit including one or more pixels; and a plurality of elastically stretchable stretching units respectively connected among the plurality of display units and forming elastic connection points with the display units, the stretching units and the plurality of display units forming a net-shaped distribution structure, wherein in a state that the display device is not under tension, a connection lines between the elastic connection points at both ends of the stretching unit are not parallel to a normal of the display units connected with at least one end of the stretching unit at the elastic connection points.
Abstract:
The present disclosure relates to a display device and a method of manufacturing the same. The display device includes: a plurality of display units, each display unit including one or more pixels; and a plurality of elastically stretchable stretching units respectively connected among the plurality of display units and forming elastic connection points with the display units, the stretching units and the plurality of display units forming a net-shaped distribution structure, wherein in a state that the display device is not under tension, a connection lines between the elastic connection points at both ends of the stretching unit are not parallel to a normal of the display units connected with at least one end of the stretching unit at the elastic connection points.