Abstract:
A method of driving a scan circuit includes providing N number of first clock signals time-sequentially to (k*N) number of stages of the scan circuit, respectively. The (k*N) number of stages includes M number of groups. A respective group of the M number of groups includes one or more stages of the scan circuit. A respective first clock signal of the N number of first clock signals includes a first level component and a second level component. With respect to N number of data enabling signals, a difference between a starting point of a first level component of an n-th first clock signal and a starting point of an n-th data enabling signal of the N number of data enabling signals is equal to tm1. Values of tm1 for first clock signals provided to different groups of the M number of groups are different.
Abstract:
A voltage providing circuit includes a first voltage output end, a temperature-sensitive element, a power supply circuit and an output circuit. The power supply circuit is configured to apply a control voltage signal to a control end of the temperature-sensitive element. The temperature-sensitive element is configured to, under the control of the control voltage signal, generate a temperature-related voltage, and output the temperature-related voltage via a first end of the temperature-sensitive element, and a value of the temperature-related voltage changes along with an ambient temperature of the temperature-sensitive element. The output circuit is configured to output a temperature-adaptive voltage via the first voltage output end. A difference between a value of the temperature-adaptive voltage and the value of the temperature-related voltage is within a predetermined range.
Abstract:
The present disclosure provides a gate turn on voltage compensating circuit, a display panel, a driving method and a display apparatus thereof. The gate turn on voltage compensating circuit includes a voltage generation module, a clock control module and a chamfering module. The voltage generation module is used for correspondingly outputting generated first voltage signal and second voltage signal to a first voltage input terminal and a second voltage input terminal of the chamfering module; the clock control module is used for controlling the chamfering module to output corresponding chamfered voltage signals in the corresponding time periods, so that the chamfering depths of gate turn on voltage signals input correspondingly to respective gate drive chips in different time periods are different.
Abstract:
A display substrate and a display device are provided. The display substrate includes: plural gate lines each having at least one end provided with plural first electrostatic discharge (ESD) units configured to discharge static electricity in the gate lines. The plural first ESD units have curvatures different from each other. By discharging the static electricity through the plural ESD units, in case one of the ESD units is broken down by electrostatic current, the other ones can continue working.
Abstract:
The present disclosure relates to a driving device and a driving method of a liquid crystal display device and a liquid crystal display device. The liquid crystal display device comprises a display panel. The driving method comprising following steps of: displaying a current image by driving the display panel in a current reverse driving mode; detecting a variation value of a common voltage of the display panel during a prescribed period of time, and determining whether the variation value of the common voltage is greater than a prescribed threshold voltage variation; and in case that the variation value of the common voltage is greater than the prescribed threshold voltage variation, determining an occurrence of an image flickering and changing the current reverse driving mode. According to the present disclosure, the flickering of the liquid crystal display device can be reduced.
Abstract:
A liquid crystal display (LCD) and a driving method thereof are disclosed. The LCD includes: an LCD panel, a grayscale voltage output portion and a grayscale voltage adjusting portion. The LCD panel includes a deformation area formed by bonding of a driver integrated circuit, and the deformation area includes a first subpixel. The grayscale voltage output portion is configured to output a first grayscale voltage to the first subpixel. The grayscale voltage adjusting portion is configured to adjust the first grayscale voltage into a second grayscale voltage, so that a brightness of the first subpixel at the second grayscale voltage is less than a brightness of the first subpixel at the first grayscale voltage.
Abstract:
The present disclosure provides a backlight module, a method for preparing the same, a driving method and a display device. The backlight module includes a backlight source and a light guide structure arranged on a light emitting surface of the backlight source; the backlight source includes a substrate and a plurality of light emitting units arranged on the substrate at intervals; the light guide structure includes a first medium layer and a second medium layer, the first medium layer includes a plurality of first medium structures corresponding to the plurality of light emitting units respectively, and an orthogonal projection of each light emitting unit on the substrate is located within an orthogonal projection of a corresponding first medium structure on the substrate; and the second medium layer includes a plurality of second medium structures, the plurality of second medium structures and the plurality of first medium structures are arranged alternately.
Abstract:
A gray-scale compensation device and method for combined pixels, and a display device. The compensation method for the combined pixels includes: measuring a gamma curve of the first pixel group to obtain a first gamma curve; measuring a gamma curve of the second pixel group to obtain a second gamma curve, where an area of the first pixel group is different from an area of the second pixel group; obtaining a compensation voltage based on the first gamma curve and the second gamma curve; and compensating the first pixel group or the second pixel group based on the compensation voltage.
Abstract:
The present disclosure relates to the field of display technology, and provides a display substrate, a manufacturing method thereof, a display panel, and a display device. The display substrate includes a base substrate, a plurality of gate lines on the base substrate, a film structure on a side of the plurality of gate lines away from the base substrate, and a plurality of conductive lines on a side of the film structure away from the base substrate. In the display substrate, an orthographic projection of each gate line on the base substrate at least partially overlaps with an orthographic projection of a corresponding conductive line on the base substrate, and a signal transmitted on each conductive line is inverted from a signal transmitted on a corresponding gate line.
Abstract:
A display panel includes a first display sub-panel and a second display sub-panel disposed opposite to each other, the first display sub-panel including a plurality of first gate lines and the second display sub-panel including a plurality of second gate lines. The display panel further includes a plurality of single-way conducting switches, the first gate lines, the second gate lines and the single-way conducting switches being disposed in one-to-one correspondence, each of the single-way conducting switches having an input end which is electrically connected to the corresponding first gate line and an output end which is electrically connected to the corresponding second gate line, and each of the single-way conducting switches being unidirectionaly conducted from the corresponding first gate line to the corresponding second gate line.