Abstract:
A method and a system are disclosed for setting up, modifying and tearing down a side-stream communication session in a basic service set (BSS) in a wireless network so that the communication session has a defined Quality of Service (QoS). Regarding setting up a side-stream communication session, a first Path message and a first Resv message (Path/Resv message) of a RSVP protocol is detected at a designated subnet bandwidth manager (DSBM) in a station having a point coordinator (PC). The first Resv message originates from a RSVP agent of a destination non-PC station in the BSS and requests resource reservation for setting up a side-stream session between a source non-PC station and at least one destination non-PC station in the same BSS. The DSBM extracts a QoS parameter set and a classifier from the first Path/Resv message for the session.
Abstract:
Certain exemplary embodiments provide a method for providing multiple access to a communication channel, the method comprising: sending a reservation request of a first type into a first selected minislot of a selected frame of an uplink channel when information of a first type is to be sent, the uplink channel having a plurality of frames, each frame having a first selectable number of minislots and a second selectable number of slots, the reservation request of the first type requesting an assignment of at least one slot for transmitting information of the first type in at least one frame that is subsequent to the selected frame.
Abstract:
Apparatus and methods implement aggregation frames and allocation frames. The aggregation frames include a plurality of MSDUs or fragments thereof aggregated or otherwise combined together. An aggregation frame makes more efficient use of the wireless communication resources. The allocation frame defines a plurality of time intervals. The allocation frame specifies a pair of stations that are permitted to communicate with each other during each time interval as well as the antenna configuration to be used for the communication. This permits stations to know ahead of time when they are to communicate, with which other stations and the antenna configuration that should be used. A buffered traffic field can also be added to the frames to specify how much data remains to be transmitted following the current frame. This enables network traffic to be scheduled more effectively.
Abstract:
Certain exemplary embodiments provide a method for providing multiple access to a communication channel, the method comprising: sending a reservation request of a first type into a first selected minislot of a selected frame of an uplink channel when information of a first type is to be sent, the uplink channel having a plurality of frames, each frame having a first selectable number of minislots and a second selectable number of slots, the reservation request of the first type requesting an assignment of at least one slot for transmitting information of the first type in at least one frame that is subsequent to the selected frame.
Abstract:
The MAC protocol of the present invention takes into account backward compatibility and conventional layering principles while introducing QoS parameters to describe and transport the QoS traffic. Minislots are also introduced in the protocol in the context of slots to reduce the transmission time of management, control, and data frames, and to facilitate channel bandwidth allocation, in response to increasing PHY rates. A highly efficient piconet joining process for wireless devices (e.g., IEEE 802.15.3 devices, etc.) is also provided by the protocol.
Abstract:
The present home networking method and system is based on the IEEE 802.11 wireless networking standard expanded to encompass home phone line media communication and/or home power line media communication operation seamlessly. For each station in home network (i.e., wireless, phone line and power line), the protocol stack at the PHY layer and above, QoS, and network security are all based on the 802.11 standard. Chipset implementations differ in an applied analog interface that is specific to the respective medium. Station-to-station transmission between wireless and wired terminals is enabled via an intelligent access point which includes an analog interface for each of the medium types. Further, each station can be configured with the appropriate analog interface to communicate directly with any wireless station. The access point is also expandable to form extended service sets.
Abstract:
A frame scheduling entity (FSE) for a station having a point coordinator (PC) in a basic service set (BSS) in a wireless local area network (WLAN) is disclosed. The FSE is located at a medium access control (MAC) sublayer of the station, and includes a scheduling table and a scheduling element. The scheduling table is logically located at a medium access control (MAC) sublayer of the station, and contains at least one entry corresponding to a session admitted to transmit traffic over the wireless network. The entry contains a virtual stream (VS) identifier (VSID), a QoS parameter set, and a data size that are each associated with the session. The scheduling table also includes a permanent entry containing a null QoS parameter set and corresponding to best-effort (asynchronous) traffic from the PC to a non-PC station associated with the PC. The scheduling element schedules transmission of a data frame for a session between peer logical link control (LLC) sublayer entities of the BSS based on the information contained in the entry for the session. The data frame scheduled by the scheduling element is labeled by the VSID contained in the entry.
Abstract:
A station, such as a point coordinator (PC) or a non-PC station, in a basic service set (BSS) in a wireless local area network (WLAN) is disclosed. The station includes a frame classification entity (FCE), a frame scheduling entity (FSE) and a QoS management entity (QME). The FCE is logically located in a logical link control (LLC) layer of the station and has a classification table containing at least one classifier entry. Each classifier entry contains a virtual stream identifier (VSID) and a frame classifier associated with a user session. The FCE receives a data frame associated with the user session, which can be one of a voice session, a video session, a data session and a multimedia session. The data frame contains in-band quality of service (QoS) signaling information for the user session. The FCE classifies the received data frame to a selected VSID contained in a classifier entry in the classification table based on a match between an in-band frame classification information contained in the received frame and the frame classifier contained in the classifier entry. The FSE is logically located in a medium access control (MAC) sublayer of the station and has a frame scheduling table containing at least one entry. Each entry in the frame scheduling table contains a VSID and a QoS parameter set associated with a user session identified by the VSID. The FSE is responsive to the classified data frame by scheduling a transmission opportunity (TO) for the classified data frame based on the at least one QoS parameter value associated with the VSID and characterizing the user session. The QME interfaces with the FCE and The FSE.
Abstract:
A method and a system for detecting a user signal in a CDMA network. (Coded) user message bits are grouped into successive groups. A differential phase is generated for each message bit group by mapping each message bit group on to a predetermined PSK constellation. An absolute phase is generated for each message bit group based on the differential phase for the current message bit group and the absolute phase for the preceding message bit group. The absolute phase signal is phase keyed to an RF carrier to form an RF signal. The RF signal is spread using two code sequences and the spread RF signal is transmitted. At the receiver, the RF signal is received and non-coherently demodulated. The demodulated RF signal is despread using the code sequences. Successive blocks of the demodulated, despread RF signal are phase compared for extracting the differential phase signal carrying the (coded) user message. Lastly, the user message is recovered.
Abstract:
A method and a system for multi-user communications in a CDMA-based satellite network. An uplink RF signal containing a coded user message that has been differentially phase encoded and spread using a Walsh function and a pseudo-random number (PN) sequence for the uplink, is received by a satellite receiver. The received uplink RF signal is non-coherently quadrature demodulated and then despread using the uplink PN sequence and Walsh function. The differential phase signal carrying the coded user message is regenerated onboard the satellite by phase comparison and switched to a selected downlink transmitter. The quadrature components of the differential phase signal are then respread using a Walsh function and a PN sequence for the downlink, followed by quadrature modulation for transmission to a terrestrial receiver. The received downlink RF signal is coherently quadrature demodulated and despread using the PN sequence and Walsh function for the downlink. The downlink carrier phase originated from the uplink differential phase is regenerated from the despread quadrature baseband components and, hence, the coded user message is detected and decoded.