Abstract:
Methods and apparatus enabling programming of electronic identification information of a wireless apparatus. In one embodiment, a previously purchased or deployed wireless apparatus is activated by a cellular network. The wireless apparatus connects to the cellular network using an access module to download operating system components and/or access control client components. The described methods and apparatus enable updates, additions and replacement of various components including Electronic Subscriber Identity Module (eSIM) data, OS components. One exemplary implementation of the invention utilizes a trusted key exchange between the device and the cellular network to maintain security.
Abstract:
A wireless communications network may include multiple nodes, one of which is selected as a master node. The nodes may take turns broadcasting respective packets according to a predetermined broadcast schedule. During any given broadcast iteration, each node may broadcast a packet while the other remaining nodes receive the broadcast packet in parallel. In response to receiving the broadcast packet, each node may be configured to obtain desired estimated timing values. The estimated timing values may be transmitted back to the master node for use in computing time-of-flight information. Frequency-synchronization operations may be periodically performed to help reduce timing errors. The time-of-flight information, along with other location-based metrics, may be used in determining the relative positions of the multiple nodes in the network.
Abstract:
This invention is directed to an electronic device with an embedded authentication system for restricting access to device resources. The authentication system may include one or more sensors operative to detect biometric information of a user. The sensors may be positioned in the device such that the sensors may detect appropriate biometric information as the user operates the device, without requiring the user to perform a step for providing the biometric information (e.g., embedding a fingerprint sensor in an input mechanism instead of providing a fingerprint sensor in a separate part of the device housing). In some embodiments, the authentication system may be operative to detect a visual or temporal pattern of inputs to authenticate a user. In response to authenticating, a user may access restricted files, applications (e.g., applications purchased by the user), or settings (e.g., application settings such as contacts or saved game profile).
Abstract:
In some embodiments, a user equipment device (UE) implements improved communication methods which include radio resource time multiplexing, dynamic sub-frame allocation, and UE transmit duty cycle control. In some embodiments, the UE may communicate with base stations using radio frames that include multiple sub-frames, transmit information regarding allocation of a portion of the sub-frames of a respective radio frame for each of a plurality of the radio frames, and transmit and receive data using allocated sub-frames and not using unallocated sub-frames. In some embodiments, the UE may operate according to a sub-frame allocation based on its current power state. The UE may transmit information to the base station and receive the sub-frame allocation based on at least the information. In some embodiments, the UE may switch transmit duty cycles based on an occurrence of a condition at the UE. The UE may inform the network of the switch.
Abstract:
In some embodiments, a user equipment device (UE) implements improved communication methods which include radio resource time multiplexing, dynamic sub-frame allocation, and UE transmit duty cycle control. In some embodiments, the UE may communicate with base stations using radio frames that include multiple sub-frames, transmit information regarding allocation of a portion of the sub-frames of a respective radio frame for each of a plurality of the radio frames, and transmit and receive data using allocated sub-frames and not using unallocated sub-frames. In some embodiments, the UE may operate according to a sub-frame allocation based on its current power state. The UE may transmit information to the base station and receive the sub-frame allocation based on at least the information. In some embodiments, the UE may switch transmit duty cycles based on an occurrence of a condition at the UE. The UE may inform the network of the switch.
Abstract:
Methods and apparatus for correcting error events associated with identity provisioning. In one embodiment, repeated requests for access control clients are responded to with the execution of a provisioning feedback mechanism which is intended to prevent the unintentional (or even intentional) over-consumption or waste of network resources via the delivery of an excessive amount of access control clients. These provisioning feedback mechanisms include rate-limiting algorithms and/or methodologies which place a cost on the user. Apparatus for implementing the aforementioned provisioning feedback mechanisms are also disclosed and include specialized user equipment and/or network side equipment such as a subscriber identity module provisioning server (SPS).
Abstract:
Apparatus and methods for provisioning wireless devices for operation in one or more networks. In one embodiment, a provisioning service may provide access client (e.g., Subscriber Identity Module) data to a secure element in the wireless user device. The device may be preloaded with a provisioning SIM profile. The device may use the provisioning profile to roam onto a carrier, and communicate with a provisioning service, which may present the user with a list of available wireless carriers, such as carriers that service the user's current geographic location. In response to a user selection, the provisioning service may load a SIM profile associated with the selected carrier onto the secure element. The loaded SIM profile can be used to obtain wireless service from the selected carrier. The user may add multiple SIM profiles, and/or may delete SIM profiles.
Abstract:
Disclosed herein is a technique for securely provisioning access control entities (e.g., electronic Subscriber Identity Module (eSIM) components) to a user equipment (UE) device. In one embodiment, a UE device is assigned a unique key and an endorsement certificate that can be used to provide updates or new eSIMs to the UE device. The UE device can trust eSIM material delivered by an unknown third-party eSIM vendor, based on a secure certificate transmission with the unique key. In another aspect, an operating system (OS) is partitioned into various sandboxes. During operation, the UE device can activate and execute the OS in the sandbox corresponding to a current wireless network. Personalization packages received while connected to the network only apply to that sandbox. Similarly, when loading an eSIM, the OS need only load the list of software necessary for the current run-time environment. Unused software can be subsequently activated.
Abstract:
Apparatus and method for maintaining hardware history profiles for a software-based emulator. In one embodiment, the disclosed software-based emulator monitors the history of the actual hardware device in a secondary device history, the history of the emulated hardware is presented within a primary device history. However, the primary device history is linked to the secondary device history, and receives the device wear history therefrom. In another aspect of the present invention, wear-leveling strategies are disclosed for handling various update sizes. Unlike existing solutions which are optimized for a single SIM that receives small data updates; various embodiments of the present invention are suitable for handling varying data sizes.
Abstract:
Methods and apparatus for correcting error events associated with identity provisioning. In one embodiment, repeated requests for access control clients are responded to with the execution of a provisioning feedback mechanism which is intended to prevent the unintentional (or even intentional) over-consumption or waste of network resources via the delivery of an excessive amount of access control clients. These provisioning feedback mechanisms include rate-limiting algorithms and/or methodologies which place a cost on the user. Apparatus for implementing the aforementioned provisioning feedback mechanisms are also disclosed and include specialized user equipment and/or network side equipment such as a subscriber identity module provisioning server (SPS).