Abstract:
A user equipment (UE) operating in a communication system comprising a base station and one or more UEs. The UE may be configured to operate on or “camp” on two different networks with one radio. In this exemplary system, the radio may be normally connected to the first network (NW1) and may from time to time be “tuned away” from NW1 to a second network (NW2). The UE may inform NW1 that it has tuned away to another network, e.g., using start and end indicators. This information may prevent NW1 from wasting downlink capacity by unnecessarily allocating downlink resources to the UE during the tune-away. Alternatively, or in addition, this information may prevent NW1 from penalizing the UE, e.g., by reducing its future downlink allocations, since the UE does not respond to NW1 commands during the tune-away.
Abstract:
In order to facilitate communication between an electronic device and another electronic device, the electronic device determines communication-quality metrics for a first connection in a wireless network based on received information from the other electronic device. Then, the electronic device calculates an overall communication-quality indicator for the first connection based on at least some of the communication-quality metrics. Moreover, the electronic device dynamically adapts the communication with the other electronic device based on the overall communication-quality indicator. For example, the electronic device may establish a second connection in a cellular-telephone network and may use the second connection to communicate with the other electronic device. Alternatively, the electronic device may provide the overall communication-quality indicator to the other electronic device and may at least partially transition the communication from the second connection in the cellular-telephone network to the first connection in the wireless network.
Abstract:
Methods and apparatus for interference coordination to improve transmission and reception performance within wireless networks. In one exemplary embodiment, a wireless transmitter transmits multiple transmissions over a determined time. The receiver receives the multiple transmissions and attempts to recover the transmitted signal. Because, the fading channel varies over time for each transmitter-receiver, by combining the received signals over multiple iterations, the signal of interest will be magnified, whereas interference effects will be suppressed.
Abstract:
Managing radio resources across dual networks includes a wireless mobile device connecting to a first wireless network using a first radio access technology. The wireless device may notify the first network of a capability to be temporarily non-responsive to the first network while maintaining a signaling connection to the first network. The wireless device may communicate with a second network. The wireless device may return to communicating with the first network subsequent to communicating with the second network, and in response to communicating with the second network for less than a predetermined amount of time, the wireless device may send a scheduling request to the first network. In response to receiving a grant acknowledgement from the first network, the wireless device may send a buffer status report that includes a value such as zero to indicate that the wireless device has returned to and can communicate with the first network.
Abstract:
Managing radio resources across dual networks includes a wireless mobile device connecting to a first wireless network using a first radio access technology. The wireless device may notify the first network of a capability to be temporarily non-responsive to the first network while maintaining a signaling connection to the first network. The wireless device may communicate with a second network. The wireless device may return to communicating with the first network subsequent to communicating with the second network, and in response to communicating with the second network for less than a predetermined amount of time, the wireless device may send a scheduling request to the first network. In response to receiving a grant acknowledgement from the first network, the wireless device may send a buffer status report that includes a value such as zero to indicate that the wireless device has returned to and can communicate with the first network.
Abstract:
A user device receives packets from a base station. The user device may invoke decoding while the packet is still being received, based on the incomplete contents of a given packet. This “partial packet decoding” relies on the fact that the underlying information in the packet is encoded with redundancy (code rate less than one). If link quality is poor, the partial packet decoding is likely to be unsuccessful, i.e., to fail in its attempt to recover the underlying information. To avoid waste of power, the user device may be configured to apply one or more tests of link quality prior to invoking the partial packet decoding on a current packet.
Abstract:
Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry coupled to multiple antennas. Signal strength measurements may be gathered using the antennas and corresponding signal strength difference measurements may be produced to reflect which of the antennas is exhibiting superior performing. Information may be gathered relating to the fading environment of the communications circuitry, such as whether the wireless communications circuitry is transitioning between a fast fading environment and a slow fading environment. For example, the wireless communications circuitry may further include a satellite positioning system receiver or an accelerometer, which may be used in gathering the information. The difference measurements may be filtered and compared to antenna switching criteria such as antenna switching thresholds. An antenna switching threshold may be adjusted in real time based at least in part on the gathered information.
Abstract:
Methods and apparatus to mitigate interference among multiple wireless subsystems of a wireless communication device are described. A host processor obtains configurations for a plurality of wireless subsystems and evaluates whether potential or actual coexistence interference exists between two or more of the wireless subsystems. The host processor provides configuration information and link quality reporting parameters to and obtains link quality reports from at least two wireless subsystems. When link quality for at least one wireless subsystem fails a set of link quality conditions, the host processor adjusts data requirements for applications that communicate through one or more of the wireless subsystems and/or adjusts radio frequency operating conditions for one or more of the wireless subsystems to mitigate interference among the wireless subsystems.
Abstract:
In order to facilitate communication between an electronic device and another electronic device, the electronic device determines communication-quality metrics for a first connection in a wireless network based on received information from the other electronic device. Then, the electronic device calculates an overall communication-quality indicator for the first connection based on at least some of the communication-quality metrics. Moreover, the electronic device dynamically adapts the communication with the other electronic device based on the overall communication-quality indicator. For example, the electronic device may establish a second connection in a cellular-telephone network and may use the second connection to communicate with the other electronic device. Alternatively, the electronic device may provide the overall communication-quality indicator to the other electronic device and may at least partially transition the communication from the second connection in the cellular-telephone network to the first connection in the wireless network.
Abstract:
In order to reduce power consumption of an electronic device during wireless communication, the electronic device may transition between a baseline (simple) receiver and a higher-power advanced receiver based on network conditions and/or environmental conditions. For example, the transition to the advanced receiver may occur when it offers improved communication performance over the baseline receiver, such as when there is significant interference and a high data rate, or when there is significant interference and a signal-to-noise ratio (SNR) is low. Similarly, the transition to the baseline receiver may occur when the capabilities of the advanced receiver are not needed, such as when there is less interference, or when the data rate is lower and the SNR is high. In this way, the electronic device can avoid the added power consumption associated with the advanced receiver except where the communication performance offered by the advanced receiver is needed.