Abstract:
A transmitter device for an inductive energy transfer system can include a DC-to-AC converter operably connected to a transmitter coil, a first capacitor connected between the transmitter coil and one output terminal of the DC-to-AC converter, and a second capacitor connected between the transmitter coil and another output terminal of the DC-to-AC converter. One or more capacitive shields can be positioned between the transmitter coil and an interface surface of the transmitter device. A receiver device can include a touch sensing device, an AC-to-DC converter operably connected to a receiver coil, a first capacitor connected between the receiver coil and one output terminal of the AC-to-DC converter, and a second capacitor connected between the receiver coil and another output terminal of the AC-to-DC converter. One or more capacitive shields can be positioned between the receiver coil and an interface surface of the receiver device.
Abstract:
An inductor coil for an inductive energy transfer system includes multiple layers of a single wire having windings that are interlaced within at least two of the multiple layers such that both an input end and an output end of the wire enter and exit the coil on a same side of the coil. The input end and the output end of the wire may abut one another at the location where the input and output wires enter and exit the inductor coil. The wire can include one or more bundles of strands and the strands in each bundle are twisted around an axis extending along a length of the wire, and when there are at least two bundles, the bundles may be twisted around the axis. At least one edge of the inductor coil can be formed into a variety of shapes, such as in a curved shape.
Abstract:
A first and second electronic device each including a connection surface and a magnetic element. The first and second devices may be in contact along the respective connection surfaces. The magnetic elements may be configured to align the first and second devices by moving either or both of the first and second devices relative to each other to achieve an aligned position. The magnetic element may also be operative to resist disconnection of first and second electronic devices when in the aligned position.
Abstract:
Docking stations having a connector with a compliance mechanism to provide improved durability and flexibility are provided herein. The compliance mechanism may be attached to a connecter in a base of a docking station that extends through an opening in a housing or shell attached to the base. The compliance mechanism may include any or all of a flexure, a torsion bar, damping members, a compressive foam member, and an engineered base plate. The compliance mechanism may be configured to provide sufficient rigidity to the connector to support a portable device when mounted on the connector within the dock in an upright position, sufficient flexibility to allow angular displacement of a mounted portable device, and sufficient elasticity to provide a resilient biasing force to return the connector and a mounted portable device from a displaced position to the upright position.
Abstract:
Docking stations having a connector with a compliant mount to provide improved durability and flexibility are provided herein. The compliant mount may couple a connector to a base of a docking station and may include at least a first and second flexure disposed there between. The first and second flexure may be configured to have flexural movement in along transverse direction so that, in combination, the flexural movement pivots the connector about a virtual pivot point a distance away from the flexures. The first and second flexures may be configured to project the virtual pivot point to a location on the connector where the connector protrudes from an opening in a docking housing, thereby minimizing the clearance required between the connector and docking housing, while providing controlled movement of the connector relative the dock.
Abstract:
A unitary elastomeric structure comprising: an annular body having an inward facing annular channel formed in an upper portion of the body and an annular sealing structure formed in a lower portion of the body, wherein the annular sealing structure is concentric with and radially within the annular channel; and a plurality of grommets disposed radially around and integrally formed with the annular body, wherein each grommet has opposing upper and lower surfaces and a bore extending through the grommet between the upper and lower surfaces.
Abstract:
A magnetic alignment system can include a primary annular magnetic alignment component and a secondary annular magnetic alignment component. The primary alignment component can include an inner annular region having a first magnetic orientation, an outer annular region having a second magnetic orientation opposite to the first magnetic orientation, and a non-magnetized central annular region disposed between the primary inner annular region and the primary outer annular region. The secondary alignment component can have a magnetic orientation with a radial component. Additional features, such as a rotational magnetic alignment component and/or an NFC coil and circuitry can be included.
Abstract:
A mounting base for use with a wirelessly locatable tag may include a base portion defining a latching member configured to engage a wirelessly locatable tag to releasably retain the wirelessly locatable tag to the mounting base, a contact block attached to the base portion and configured to be positioned at least partially within a battery cavity of the wirelessly locatable tag, the contact block defining a top side and a peripheral side. The mounting base may further include a first conductive member positioned along the peripheral side of the contact block and configured to contact a first battery contact in the battery cavity of the wirelessly locatable tag, a second conductive member outwardly biased from the top side of the contact block, the second conductive member configured to contact a second battery contact in the battery cavity of the tag, and a power cable coupled to the base portion.
Abstract:
An electronic device such as a voice-controlled speaker device may have a housing. A speaker and other input-output components and control circuitry may be mounted within the housing. Light-emitting components may emit light that passes through a curved upper top cap portion or other housing structure. Some of the light-emitting components may be rotated to improve color balance. Optical structures such as a dual-shot injection molded light control plate may be disposed over the light-emitting components to promote light mixing, reduce hotspots, and improve contrast on the top cap. The light control plate may have an upper clear layer with bell-shaped cavity portions configured to help spread light in the lateral direction and may have a reflective lower layer with dish-shaped portions configured to reflect and diffuse light back towards the top cap. The surface of the dish-shaped portions may be provided with microtextured structures to help scatter light.
Abstract:
A mounting base for use with a wirelessly locatable tag may include a base portion defining a latching member configured to engage a wirelessly locatable tag to releasably retain the wirelessly locatable tag to the mounting base, a contact block attached to the base portion and configured to be positioned at least partially within a battery cavity of the wirelessly locatable tag, the contact block defining a top side and a peripheral side. The mounting base may further include a first conductive member positioned along the peripheral side of the contact block and configured to contact a first battery contact in the battery cavity of the wirelessly locatable tag, a second conductive member outwardly biased from the top side of the contact block, the second conductive member configured to contact a second battery contact in the battery cavity of the tag, and a power cable coupled to the base portion.