Abstract:
In order to reduce the power consumption of a receiving electronic device, received advertising beacons may be filtered so that the receiving electronic device selectively transitions from a power-saving mode to a normal operating mode. For example, the receiving electronic device may receive a beacon with advertising information for a transmitting electronic device. If the advertising information is changed relative to a previous version of the advertising information for the transmitting electronic device, the receiving electronic device may transition from the power-saving mode to the normal operating mode. In this way, the receiving electronic device may ‘wake up’ if it receives an advertisement that it wants to act on, such as advertisements for: file sharing, wireless streaming of information, proximity pairing and/or continuity of a user experience with an application when the user transitions from the transmitting electronic device to the receiving electronic device.
Abstract:
This document describes, inter alia, techniques for use at a wireless device for establishing communications with other devices, and for displaying related information in a graphical user interface. The wireless device may discover, pair with, and/or connect to other wireless devices, and may display a list of information regarding the other wireless devices in a graphical user interface. The wireless device may order the list based on factors such as: the connectivity status of the other devices (e.g., whether the other devices are connected, paired, or discovered); the types of the other wireless devices (e.g., whether the devices are human interface devices (HIDs), audio devices, phones, imaging devices, computers, or other types of devices); whether device names for the other wireless devices are known/unknown; and/or other factors. The features described herein may be implemented using Bluetooth wireless technology, and/or any other wireless technology.
Abstract:
Migration of a pairing of wearable device to a new companion electronic device is disclosed. In one embodiment, pairing migration is performed by syncing and verifying a migration key in the wearable and new companion device. Pairing migration includes moving settings and pairing data of the wearable to the new companion device in response to detecting the wearable is associated with the migration key, wherein the migration key establishes a validation of trust of the wearable relative to the companion device. The settings and pairing data can include configuration and protected data and one or more keys to establish a trust relationship between the wearable and new companion device. The settings and pairing data can also include device data such that the wearable can be discoverable by the new companion device.
Abstract:
Methods for aggregating Bluetooth profiles for faster connection and configuration are disclosed, including transmitting, subsequent to establishing a connection, a request message to a peer device that indicates support of a fast connection protocol for Bluetooth profiles configuration and receiving a response message from the peer device that indicates the peer device supports the fast connection protocol. After pairing with the peer device, a first list of profile descriptors for a plurality of Bluetooth profiles supported by the device may be transmitted to the peer device and a second list of profile descriptors for a plurality of Bluetooth profiles supported by the peer device may be received. A configuration of a plurality of Bluetooth profiles base, at least in part, on a comparison of the first list of profile descriptors to the second list of profile descriptors may be determined and transmitted to the peer device.
Abstract:
A first wireless communication device (UE device) associated with a certain user (or included in a specified set/group of UE devices) may establish a first communication link with an accessory device according to a short-range radio access technology, and transmit link (pairing) information associated with the first communication link to a server, such as a cloud-based server. The server may share this (first) link information with other UE devices associated with the same user (or belonging to the same specified group of UE devices as the first UE device). Link information associated with the other UE devices (i.e. second link information) may equally be shared with the accessory device, and the other UE devices and accessory device may use the first link information and second link information in establishing respective communication links between any of the other UE devices and the accessory device without having to undergo a pairing procedure.
Abstract:
Systems, methods and non-transitory computer readable media for allowing a user to switch between wearable items that have been paired or associated with an electronic device, such as a smartphone, are described. In one embodiment, the wearable items automatically detect a removal of a first wearable item from a user's body and an attachment of a second wearable item to the user's body. Messages from the wearable items are transmitted to the electronic device to allow the electronic device to switch the active wearable item from the first wearable item to the second wearable item. The switch can occur while the electronic device is in a locked state, and the electronic device can synchronize the second wearable item with data received from the first wearable item. Other embodiments are also described.
Abstract:
Systems, methods and non-transitory computer readable media for allowing a user to switch between wearable items that have been paired with an electronic device, such as a smartphone, are described. In one embodiment, the wearable items automatically detect a removal of a first wearable item from a user's body and an attachment of a second wearable item to the user's body. Messages from the wearable items are transmitted to the electronic device to allow the electronic device to switch the active wearable item from the first wearable item to the second wearable item. The switch can occur while the electronic device is in a locked state, and the electronic device can synchronize the second wearable item with data received from the first wearable item. Other embodiments are also described.
Abstract:
A uniform protocol can facilitate secure, authenticated communication between a controller device and an accessory device that is controlled by the controller. An accessory and a controller can establish a pairing, the existence of which can be verified at a later time and used to create a secure communication session. The accessory can provide an accessory definition record that defines the accessory as a collection of services, each service having one or more characteristics. Within a secure communication session, the controller can interrogate the characteristics to determine accessory state and/or modify the characteristics to instruct the accessory to change its state.
Abstract:
Systems, methods and non-transitory computer readable media for allowing a user to switch between wearable items that have been paired with an electronic device, such as a smartphone, are described. In one embodiment, the wearable items automatically detect a removal of a first wearable item from a user's body and an attachment of a second wearable item to the user's body. Messages from the wearable items are transmitted to the electronic device to allow the electronic device to switch the active wearable item from the first wearable item to the second wearable item. The switch can occur while the electronic device is in a locked state, and the electronic device can synchronize the second wearable item with data received from the first wearable item. Other embodiments are also described.
Abstract:
Systems, methods and non-transitory computer readable media for allowing a user to switch between watches that have been paired with a device such as a smartphone are described. In one embodiment, the watches automatically detect a removal of a first watch from a user's wrist and an attachment of a second watch to the user's wrist. Messages from the watches are transmitted to the device to allow the device to switch the active watch from the first watch to the second watch. The switch can occur while the device is in a locked state, and the device can synchronize the second watch with data received from the first watch. Other embodiments are also described.