AUTOMATED VEHICLE REPAIR SYSTEM
    21.
    发明申请

    公开(公告)号:US20220382262A1

    公开(公告)日:2022-12-01

    申请号:US17755023

    申请日:2020-10-20

    Abstract: A defect detection and ranking system for a vehicle assembly line is provided. The system includes an image capture device that captures a plurality of images of a vehicle on the vehicle assembly line. The system also includes a defect detector that analyzes the plurality of captured images and, based on the analysis, detects a plurality of defects on the surface of the vehicle. Each of the plurality of defects has an associated x-y-z coordinate location, a defect type, and a defect severity. The system also includes a datastore containing a vehicle specification, for the vehicle on the vehicle assembly line, and a defect priority based on the vehicle specification. The system also includes a defect prioritization generator configured to: receive the plurality of defects from the defect detector, retrieve the vehicle specification and the defect priority, and apply the defect priority to the plurality of defects, and output a prioritized list of defects, wherein the prioritized list of defects. The defect prioritization generator outputs the prioritized list of defects to an output device associated with the vehicle assembly line.

    PAINT REPAIR PROCESS BY SCENARIO
    22.
    发明申请

    公开(公告)号:US20220126319A1

    公开(公告)日:2022-04-28

    申请号:US17425035

    申请日:2019-08-23

    Abstract: A method and associated system provides automated abrasive paint repair using automated abrasive paint repair devices that selectively sand, buff, and polish a substrate in response to received instructions generated by a controller. The controller receives coordinates of each identified defect in the substrate along with parameters describing characteristics of each defect, selects a sanding process, a buffing process, and/or a polishing process based on empirically derived rules established by skilled/expert human operators and the received parameters. The controller outputs instructions to cause the automated abrasive paint repair devices to execute the selected sanding process, buffing process, and/or polishing process using the received parameters. The empirically derived rules and parameters may be stored in a lookup table and/or updated by a machine learning module.

    Paint repair process by scenario
    23.
    发明授权

    公开(公告)号:US12275038B2

    公开(公告)日:2025-04-15

    申请号:US17425035

    申请日:2019-08-23

    Abstract: A method and associated system provides automated abrasive paint repair using automated abrasive paint repair devices that selectively sand, buff, and polish a substrate in response to received instructions generated by a controller. The controller receives coordinates of each identified defect in the substrate along with parameters describing characteristics of each defect, selects a sanding process, a buffing process, and/or a polishing process based on empirically derived rules established by skilled/expert human operators and the received parameters. The controller outputs instructions to cause the automated abrasive paint repair devices to execute the selected sanding process, buffing process, and/or polishing process using the received parameters. The empirically derived rules and parameters may be stored in a lookup table and/or updated by a machine learning module.

    SYSTEMS AND METHODS FOR PROCESSING A WORKSURFACE

    公开(公告)号:US20240316768A1

    公开(公告)日:2024-09-26

    申请号:US18579421

    申请日:2022-07-20

    Abstract: A robotic system is presented that includes a surface inspection system that receives sampling information for a number of areas within a region of a worksurface. The system also includes a robotic arm, coupled to a surface engaging tool, the robotic repair arm being configured to cause the surface processing tool to engage the region of the worksurface. The system also includes a process mapping system configured to, based on the sampling information: approximate a surface topography in the region of the worksurface, generate a surface processing plan for the region based on the approximated surface topography that includes a trajectory. The surface processing plan includes one of: a force profile along the trajectory, a velocity profile for the surface engaging tool along the trajectory, a rotational speed profile, for the surface engaging tool, along the trajectory, or a trajectory modification that accounts for the presence of a surface feature identified in the approximated surface topography. The process mapping system is also configured to generate a control signal for the robotic arm that includes the surface processing plan.

Patent Agency Ranking