Abstract:
Embodiments herein relate to wireless communication using combined channel training and physical layer header (SIG) signaling. Devices that comply with the 802.11 ax or High Efficiency WLAN (HEW) standard may generate and transmit packets that include such combined information. The combined information may be beamformed to a receiver device via an OFDM signal, which may be decoded by the receiver device to obtain subsequent data included in the signal. For example, initial training symbols associated with channel training subcarriers in the signal may be detected and used to perform a rough estimate of the channel. The rough estimate may thereafter be refined using data symbols detected from adjacent data subcarriers using the channel training symbols. In this way, data subcarriers may also be used to determine a channel response along with channel training subcarriers. Channel training information may be transmitted with data, such as user-specific information, in a single symbol.
Abstract:
A PDSCH resource element mapping method is used for joint transmissions. The method solves a problem of colliding resource elements in joint transmissions, due to interference caused when PDSCH resource elements are transmitted in the resource block of one cell and cell-specific reference signals (CRSs) are transmitted in the same location of the resource block of an adjacent cell. The method is particularly beneficial for coordinated multipoint (CoMP) transmissions. The PDSCH resource element mapping method employs one of three schemes for transmitting the collided resource elements, with minimal interference. In the first scheme, one PDSCH symbol is transmitted over three consecutive CRS-collided PDSCH resource elements. In the second scheme, two PDSCH symbols are transmitted over three consecutive CRS-collided PDSCH resource elements. In a third scheme, CRS-collided resource elements are transmitted using a lower modulation order than is specified by the modulation and coding scheme.
Abstract:
Techniques are described for forming signals for transmission to a receiver. Two transmitters can form resource blocks with different Physical Uplink Control Channel (PUCCH) demodulation reference signal (DMRS) patterns that are orthogonal over time and/or frequency to each other. The transmitters can simultaneously transmit the same resource block but with different DMRS patterns. If a receiver is mounted with two antennas, the receiver can utilize a MIMO receiver to differentiate resource blocks from two transmitters.
Abstract:
Systems and techniques for wireless device-to-device (D2D) communication are provided herein. A D2D group identifier may be included in wireless transmissions within D2D groups. D2D interference mitigation processes may be initiated when a D2D group identifier is detected by a wireless device outside the D2D group.
Abstract:
A particular kind of component carrier that may be used as a secondary cell in an LTE system is a new type carrier that has reduced or eliminated legacy control signaling such as the omission of CRSs. Alternative techniques are described for performing timing and frequency synchronization in the downlink between an eNB and a UE when CRSs are not present in a component carrier. These techniques involve using either channel state information reference signals or UE-specific reference signals.
Abstract:
Embodiments disclosed herein are directed to communicating time-critical ultra-low latency (ULL) data using one or more dedicated resource units (RUs). A station (STA) decodes a trigger frame received from an access point station (AP) encoded to indicate resource units (RUs) of an UL PPDU for an uplink multi-user orthogonal frequency division multiple access (UL MU OFDMA) data transmission by a first and a second station STA. The trigger frame may also be encoded to indicate configuration information for a dedicated RU for time-critical ultra-low latency (ULL) UL data. The dedicated RU may be one RU of one or more RUs of the UL PPDU that are reserved for time-critical communications. The STA may encode time-critical ULL UL data for transmission to the AP on the dedicated RU during the uplink MU OFDMA data transmission by the first and second STAs. The time-critical ULL UL data may start at any time during transmission of the UL PPDU. Medium access control layer (MAC) padding may be included in a MAC payload until the time-critical ULL UL data is available at the MAC layer of the STA.
Abstract:
Methods, computer readable media, and apparatus for determining a receive (Rx) number of spatial streams (NSS) for different bandwidths (BWs) and modulation and control schemes (MCSs) are disclosed. An apparatus is disclosed comprising processing circuitry configured to decode a supported HE-MCS and a NSS set field, the supported HE-MSC and NSS set field received from an high-efficiency (HE) station. The processing circuitry may be further configured to determine a first maximum value of N receive (Rx) SS for a MCS and a bandwidth (BW), where the first maximum value of N Rx SS is equal to a largest number of Rx SS that supports the MCS for the BW as indicated by the supported HE-MCS and NSS set field; and, determine additional maximum values based on an operating mode (OM) notification frame, and a value of an OM control (OMC) field. Signaling for BW in 6 GHz is disclosed.
Abstract:
A station (STA) may operate as a first peer-to-peer (P2P) client (P2P1) for P2P operations with dual-stage triggering. The STA may decode a primary frame trigger frame (TF) from an access point (AP) operating as a coordinator. The primary TF may allocate resources in an initial portion of a time-duration allocation to the P2P1 for the P2P operations with one or more other peer stations, including a second P2P client (P2P2) and a third P2P client (P2P3). The primary TF may further allocate resources in a subsequent portion of the time-duration allocation to the P2P2 for the P2P operations. The STA may also encode a first secondary TF for transmission within the initial portion of the time-duration allocation. The first secondary TF may allocate specific resource units (RUs) to the one or more other peer stations. The STA may also decode a TB physical layer protocol data unit (TB PPDU) encoded in accordance with a multi-user orthogonal frequency division multiple access (MU OFDMA) frame format. The TB PPDU may be received concurrently within the initial portion of the time-duration allocation from the one or more other peer stations in accordance with an uplink OFDMA technique.
Abstract:
This disclosure describes systems, methods, and devices related to EHT training fields. A device may send a trigger frame having a type of HE null data packet (NDP) feedback, wherein the trigger frame requests feedback from a station device (STA) of one or more station device (STA). The device may receive a frame from the STA, wherein the frame comprises an HE long training field (HE-LTF) portion and an HE short training field (HE-STF), wherein the HE-STF is generated in a frequency domain over a first bandwidth. The device may identify that the HE-LTF comprises energy on a set of tones, wherein the set of tones are selected based on feedback status values associated with a resource unit (RU) tone set index. The device may identify that the HE-STF comprises a second set of tones that are energized based on a sequence that is selected based on the first bandwidth used for the frame
Abstract:
An extremely high throughput (EHT) station (STA) configured for trigger based (TB) transmission may decode an trigger frame (TF) received from an access point (AP). The TF may include an assignment of resources comprising one or more 20 MHz channels. The EHT STA may determine which of the one or more assigned channels are available for transmission and which of the allocated channels are unavailable when the EHT STA is assigned more than one 20 MHz channel. The EHT STA may encode a EHT TB PPDU in response to the trigger frame. The EHT TB PPDU may be encoded to include an EHT preamble followed by a data field. The EHT preamble may be encoded to indicate channel availability. The EHT STA may generate signaling to cause the EHT STA to transmit the encoded EHT TB PPDU only on the assigned channels that have been determined to be available.