Abstract:
A method and apparatus providing communications between mobile units and other communications devices, is disclosed wherein, in response to a request to call a mobile unit from an originating communications device, a paging signal is sent via a global communications network and received by a mobile unit. The paging signal contains caller and callee identification codes, which are decoded by the mobile unit. A paging response signal, in the form of a reverse call setup signal, is then transmitted from the mobile unit to the originating communications device. Transmission of the paging signal is preferably stopped when a correspondence condition exists such that the caller and callee identification codes of the paging signal correspond to the caller and caller identification codes of the paging response signal.
Abstract:
Ghosts are canceled in received analog TV (for IDTV, EDTV, and HDTV) signals by utilizing the fact that there are short periods of time without the analog signals (the horizontal flyback interval between the lines) to process the received signal on a line-to-line basis using a finite impulse response (FIR) or an infinite impulse response (IIR) equalizer. This line-by-line processing (which can be implemented by periodic cleansing of the equalizer) overcomes the limitations of standard equalizers to allow for 40-50 dB of suppression of ghosts, even with nulls in the spectrum, as long as the ghost delay is less than the period of time without the analog signal. Furthermore, by using time inversion in combination with line-by-line processing, the stability problem of the conventional IIR equalizer is eliminated. The IIR equalizer may be implemented on a single digital integrated circuit. Alternatively, an FIR equalizer can be used which, although it may require multiple chips (i.e., more taps), can acquire and adapt to the ghosted channel more rapidly than an IIR equalizer. With line-by-line processing, FIR and IIR equalizers can eliminate any ghost with delays up to 11 .mu.sec in IDTV or EDTV. For larger delays, a standard IIR or FIR equalizer can be used as a preprocessor to eliminate small ghosts and an adaptive antenna can be used to eliminate large ghosts. Thus, with these techniques, the ghosting problem can be eliminated in all TV receivers.
Abstract:
A cross connect network is utilized in order to switch packets of information among a plurality of network nodes. Each of the plurality of network nodes generates a multiplexed data signal, where each multiplexed data signal includes several channels. The cross connect network routes the data packets based upon which channel each packet is in when it arrives from the network node, rather than based upon the address in each packet. Thus, the need to read the address and switch the packet at each switching stage in the cross connect network is eliminated.
Abstract:
In a telephone local loop transmission arrangement, data is communicated from the customer premises to the central office utilizing a multi-dimensional, passband signal illustratively at 480 kb/s and 1.544 Mb/s.
Abstract:
In a private telecommunications network, a plurality of digital PBXs are interconnected via pairs of codecs. The codecs of each pair, or "tandem", are each operative to encode 64 kilobit/second (kbps) mu-law speech so as to compress it to 16 kbps speech for transmission to the other codec in the tandem. The latter is operative to thereafter decompress the 16 kbps speech back to 64 kbps. Each codec has a second mode of operation in which, rather than decode the encoded speech, it preserves the bits thereof in its own output signal. The codec transitions to this mode whenever it recognizes the presence of another codec on its high-bit-rate side of the connection. As a result, only one encoding/decoding cycle is performed across the connection, thereby minimizing the speech-coding-induced distortion and delay therein. The mechanism enabling a codec to communicate its presence to another codec on its high-bit-rate side of the connection is based on the transmission of predetermined synchronization patterns inserted in the signals it outputs in that direction. In a second embodiment, codecs of the above-described type are used in a cellular mobile radio telecommunications system.
Abstract:
In a first data receiver (10), sampling circuitry (20, 25, 35) forms samples of a received data signal representing a succession of data symbols. The samples are formed at twice the symbol rate. Transversal filter circuitry (251, 261) operates on the samples by multiplying them by respective ones of a queue of coefficients. Further circuitry (55, 60, 65, 70, 252, 262), operative in response to the resulting products, forms decisions as to the values of the transmitted symbols and updates the values of the coefficients. Timing recovery circuitry (40) periodically identifies the largest of the coefficients in magnitude and either advances or retards the operation of the sampling circuitry by a fixed step size depending on whether that coefficient is or is not within a predetermined portion of the queue. Timing recovery circuitry (830) within a second data receiver (100) operates in a similar manner, but employs a step size whose magnitude is determined by the position of the largest coefficient relative to the center of the coefficient queue.
Abstract:
A quadrature amplitude-modulated (QAM) data signal receiver employs a phase compensation arrangement (16, 31, 33) before the equalizer (17). The arrangement utilizes the assumption that the frequency components typically present in the phase perturbance are power-line related. This enables an effective phase compensator to be of relatively low complexity compared to the equalizer (17). Since the compensator is "pretuned", only the phase and amplitude of the frequency components need be adaptively found. This makes for a relatively stable arrangement with a suitable convergence rate. In an alternative arrangement, a phase compensator (216, 233, 240) is provided for use after the equalizer (217).
Abstract:
Slotted Aloha-NOMA (SAN) protocol is an uncoordinated, non-orthogonal, random access protocol that exploits the simplicity of SA (Slotted Aloha) and the superior throughput of non-orthogonal multiple access (NOMA) and its ability to resolve collisions via use of successive interference cancellation (SIC) receiver. In SAN protocol, the SIC receiver at the IoT gateway adaptively learns the number of active devices (which is not known a priori) using multiple hypothesis testing in order to successfully distinguish between signals transmitted from different IoT devices.
Abstract:
A system for performing non-invasive networked medical procedures including a number of in vivo medical devices, a communication path between at least two of the devices, an ex vivo control unit to control the behavior of the devices, and a wireless communication path between the control unit and at least one of the devices. An associated method for performing non-invasive networked medical procedures is also provided. Further included is a simulation method that utilizes accurate electromagnetic field simulations, using a software based test bench, to determine the maximum allowable transmitted power levels from in vivo devices to achieve a required bit error rates (BER) at an in vivo or ex vivo node (receiver) while maintaining the specific absorption rate (SAR) under a required threshold.
Abstract:
A Layer 2 Virtual Private Network (L2VPN) system is provided. A Provider Backbone Bridge (PBB) network is provided which comprises a plurality of sites to be connected via a L2VPN. The plurality of sites in the PBB network is connected using a plurality of provider backbone trunks that includes a Provider Backbone Transport (PBT) trunk or a Provider Backbone Bridge Traffic Engineering (PBB-TE) trunk, such that the L2VPN includes the plurality of sites.