Abstract:
In an embodiment, a filter media support frame for supporting first and second panels of filter media in a spaced apart relation is provided. The filter media support frame includes a first panel support, a second panel support and a connection portion. The first panel support has a first inner side and a first outer side. The second panel support has a second inner side and a second outer side. The second inner side faces the first panel support. The first connection portion hingedly connects to the first panel support by a first hinge portion and hingedly connects to the second panel support by a second hinge portion. Filter elements including the filter media support road filter media are provided.
Abstract:
Filters and filter assemblies including one or more shield elements to protect the filter media of the filters during installation of the filters into a filter housing of the filter assembly are provided. A filter includes first and second media packs, a housing seal system, a handle and a shield element. Filter media packs extend from a first end to a second end in a diverging manner. The first end has a length dimension and a width dimension that extend transversely. A shield element projects over the first and second media packs at the first end a span in the width direction of at least 40% of the width dimension defined by the first and second media packs and projecting a span in the length direction of at least 5% of the length dimension defined by the first end.
Abstract:
A microfluidic device for separating target components from a source fluid includes one or more source channels connected to one or more collection channels by one or more transfer channels. The target components of the source fluid can be magnetic or bound to magnetic particles using a know binding agent. A source fluid containing magnetically bound target components can be pumped through the source channel of the microfluidic device. A magnetic field gradient can be applied to the source fluid in the source channel causing the magnetically bound target components to migrate through the transfer channel into the collection channel. The collection channel can include a collection fluid that is stagnant until a predefined volume of source fluid is processed or a predefined volume of target components accumulate in the collection channel, at which point collection fluid can be pumped into the collection channel to flush the target components out of the collection channel. The target components can be subsequently analyzed for detection and diagnosis.
Abstract:
The invention generally relates to combining a plurality of flow streams. In various embodiments, a first channel transports a first laminar fluid flow, a second channel transports a second laminar fluid flow, and the first and second channels enter a merging region at an acute angle to one another along separate substantially parallel planes.
Abstract:
A method of fabricating a MEMS piezoelectric resonator system includes forming a stack of layers on a substrate, the stack comprising at least one piezoelectric material layer spaced from the substrate by a sacrificial layer, patterning the stack to form a plurality of edge coupled resonators, and removing at least a portion of the sacrificial layer to suspend the resonators relative to the substrate.
Abstract:
A suspension of a chip-scale device is accomplished using a suspension frame and at least one first tether. The chip-scale suspension frame defines a first plane and an opening through the suspension frame. At least one first tether crosses the opening at a first angle relative to the first plane and can be used to position the chip-scale device at least partially within the opening.
Abstract:
A suspension of a chip-scale device is accomplished using a suspension frame and at least one first tether. The chip-scale suspension frame defines a first plane and an opening through the suspension frame. At least one first tether crosses the opening at a first angle relative to the first plane and can be used to position the chip-scale device at least partially within the opening.
Abstract:
A filter element and multi-component holding assembly for a filter element is provided. The filter element includes first and second media panels, a support frame, a base frame and first and second end cap structures. Each filter media panel defines first, second, third and fourth sides. The first and second sides extend between the third and fourth sides. The support frame maintains the first and second filter media panels in a spaced orientation forming a cavity therebetween. The base frame defines a first opening in fluid communication with the cavity. The first end cap structure seals the third side of the first and second filter media panels and the second end cap structure seals the fourth side of the first and second filter media panels. The base frame has a first portion captured in the first end cap structure and a second portion captured in the second end cap structure.
Abstract:
The disclosure generally relates to method and apparatus for forming three-dimensional MEMS. More specifically, the disclosure relates to a method of controlling out-of-plane buckling in microstructural devices so as to create micro-structures with out-of-plane dimensions which are 1×, 5×, 10×, 100× or 500× the film's thickness or above the surface of the wafer. An exemplary device formed according to the disclosed principles, includes a three dimensional accelerometer having microbridges extending both above and below the wafer surface.
Abstract:
Presented herein are systems, methods and devices relating to miniature actuatable platform systems. According to one embodiment, the systems, methods, and devices relate to controllably actuated miniature platform assemblies including a miniature mirror.