Abstract:
Provided are a light emitting device having a nitride quantum dot and a method of manufacturing the same. The light emitting device may include: a substrate; a nitride-based buffer layer arranged on the substrate; a plurality of nanorod layers arranged on the nitride-based buffer layer in a vertical direction and spaced apart from each other; a nitride quantum dot arranged on each of the plurality of nanorod layers; and a top contact layer covering the plurality of nanorod layers and the nitride quantum dots. A pyramid-shaped material layer may be further included between each of the plurality of nanorod layers and each of the nitride quantum dots. One or the plurality of nitride quantum dots may be arranged on each of the nanorod layers.
Abstract:
The present invention relates to a multi-luminous element and a method for manufacturing the same. The present invention provides the multi-luminous element comprising: a buffer layer disposed on a substrate; a first type semiconductor layer disposed on the buffer layer; a first active layer which is disposed on the first type semiconductor layer and is patterned to expose a part of the first type semiconductor layer; a second active layer disposed on the first type semiconductor layer which is exposed by the first active layer; and a second type semiconductor layer disposed on the first active layer and the second active layer, the first and second active layers being repeatedly disposed in the horizontal direction, and the method for manufacturing the same. The multi-luminous element according to the present invention reduces loss of light emitting efficiency and can generate multi-wavelength light by repeatedly disposing the first and second active layers in the horizontal direction.
Abstract:
Provided is an apparatus for acquiring and projecting a broadband image, the apparatus including: a probe unit provided, on a probe housing of the probe unit, with a white light source unit configured to emit white light for acquiring a visible light image to a subject, a fluorescence excitation light source unit configured to emit fluorescence excitation light for acquiring an invisible light fluorescence image, and an image acquisition unit configured to receive an invisible light fluorescence image signal for the subject, and an image projection unit configured to project an image onto the subject; and an image processing unit configured to process an image received from the image acquisition unit. According to the apparatus for acquiring and projecting a broadband image, the visible light image and the invisible light fluorescence image may be simultaneously acquired and then displayed, and the acquired fluorescence image is projected onto a position where a fluorescence signal may be revealed, thus visually providing a position and shape in which the fluorescence signal is generated.
Abstract:
Provided are electronic devices having quantum dots and methods of manufacturing the same. An electronic device includes a first nanorod, a quantum dot disposed on an upper surface of the first nanorod, and a second nanorod that covers a lateral surface of the first nanorod and the quantum dot. The first nanorod and the second nanorod are of opposite types.
Abstract:
Devices having nitride quantum dots and methods of manufacturing the same are provided. The device includes a nitride group material substrate, a plurality of nanorods that are formed on the nitride group material layer and are separated from each other, and a nitride quantum dot on each of the nanorods. A pyramid-shaped layer may be further formed between each of the nanorods and the nitride quantum dot. The nanorods and the nitride quantum dot are covered by an upper contact layer. A plurality of nitride quantum dots may be formed on each of the nanorods and the respective nitride quantum dots may have different sizes.
Abstract:
There is provided a light emitting apparatus including: at least one pair of lead frames; a light emitting device electrically connected to the lead frames to emit ultraviolet rays; a body including a side wall surrounding the light emitting device, and a groove portion formed in an upper surface of the side wall to receive an adhesive; and a lens part disposed above the light emitting device and fixed to the upper surface of the side wall of the body by the adhesive.
Abstract:
The present invention relates to a multi-luminous element and a method for manufacturing the same. The present invention provides the multi-luminous element comprising: a buffer layer disposed on a substrate; a first type semiconductor layer disposed on the buffer layer; a first active layer which is disposed on the first type semiconductor layer and is patterned to expose a part of the first type semiconductor layer; a second active layer disposed on the first type semiconductor layer which is exposed by the first active layer; and a second type semiconductor layer disposed on the first active layer and the second active layer, the first and second active layers being repeatedly disposed in the horizontal direction, and the method for manufacturing the same. The multi-luminous element according to the present invention reduces loss of light emitting efficiency and can generate multi-wavelength light by repeatedly disposing the first and second active layers in the horizontal direction.
Abstract:
This disclosure relates to a glasses-type augmented reality apparatus, and system with compact dimensions. An aspect of the present embodiment provides an augmented reality apparatus which provides a wearer with a digital holographic image incident from the outside as a holographic image, the apparatus including a plurality of holographic optical elements (HOEs) arranged in the form of concentric circles having different radii inside an optical configuration worn by the wearer to diffract the incident digital holographic image and provide the diffracted digital holographic image to the wearer.
Abstract:
According to an embodiment, a holographic image sensor comprises a lens focusing object light incident from outside of the holographic image sensor to the holographic image sensor, a filter transmitting a predetermined wavelength band of light of the focused object light, a light receiving unit receiving interference light to sense a holographic image, and a reference light source directly emitting reference light having the predetermined wavelength band to the light receiving unit.
Abstract:
Disclosed is a spatial property measurement device or color implementation property of a holographic image. According to an aspect of the present embodiment, a spatial property measurement device or color implementation property of a holographic image reproduced by a holographic display device is provided.