Abstract:
A method for testing light-emitting devices in a batch-wise, associated with a system for the same purpose, comprises the steps of: preparing the light-emitting devices on a moving carrier unit in a manner of aligning a predetermined longitudinal direction of the light-emitting devices with a predetermined transportation direction of the moving carrier unit, each of the light-emitting devices further having plural light-emitting elements; transporting orderly the light-emitting devices to pass a test area on a base of the system, in which the base energizes only the light-emitting elements within the test area; and, a solar cell module detecting continuously the energized light-emitting elements within the test area and further forming signals with respect to photo energy received in the test area.
Abstract:
Improved methods and systems that assist a user in navigating lists of ordered items are disclosed. According to one embodiment, a character scroll mode enables a user to conveniently and efficiently traverse a list in accordance with one or more significant characters of the items in the list. In one implementation, the list is a list of media items that are arranged in an ordered way. For example, the media items in the list can be arranged alphabetically. Besides the character scroll mode, the user is able to traverse the list in a quantity scroll mode, which may or may not provide acceleration.
Abstract:
In the automatic positioning/engraving method for a laser engraving machine, a pattern to be used for engraving is framed with a quadrilateral frame, then a first and a second coordinate position of two mutually opposite ends of a diagonal line of the quadrilateral frame are obtained by measuring; a pen carriage on the laser engraving machine is moved to be above a workpiece to position a first positioning point in coincidence with the first coordinate position and a second positioning point in coincidence with the second coordinate position; and a processor is used to calculate to decide a center between the first and the second positioning points according to the coordinate values of the first and the second positioning points, and a driving unit is used to move the pen carriage to the center for starting pattern engraving.
Abstract:
A method and system for creating an ethernet-formatted packet from an upstream DOCSIS packet. The upstream packet is first received along with packet characteristic data that is contained in physical layer prepend data and in the packet header. A packet tag is then created, based on the packet characteristic data. The packet characteristic data includes identifiers for the transmitting remote device and the channel over which the transmission is sent. Packet characteristic data also includes information about the physical characteristics of the transmission signal, such as the power level and time offset. The packet characteristic data also includes administrative information, such as the minislot count at which the packet is received and whether the packet was received in contention. The packet tag is appended to the payload of the upstream packet. Also appended to the payload is an encapsulation tag, and source and destination address headers. The result is a packet in an ethernet format. The resulting packet can therefore be sent using the ethernet protocol. The packet includes information that characterizes a DOCSIS packet. In a distributed cable modem termination system, this additional characterizing information can be used by processes further upstream, such as packet classification. An analogous operation can take place with respect to packets going downstream. Here, a DOCSIS packet is formed at an intermediate node, on the basis of a received ethernet-formatted packet.
Abstract:
An audio input interface (122) receives a digital audio signal and identifies an audio bitstream which is optionally decrypted by a decryption unit (123), and decoded by an audio decoding unit (124). An audio digital to analog converter (126) converts the decoded audio bitstream to an analog audio signal which is optionally decrypted by an audio analog decryption unit (127). A video input interface (142) receives a digital video signal and identifies a video bitstream which is optionally decrypted by a video digital decryption unit (143), and decoded by a video decoding unit (144). A video digital to analog converter (146) converts the decoded video bitstream to an analog video signal that is optionally decrypted by a video analog decryption unit (147). An analog transmitter (150) mixes the analog audio signal and analog video signal and transmits an analog wireless output signal to an analog wireless device (110).
Abstract:
Tests are performed prior to or during the boot operation to determine whether files are corrupted. This may indicate the presence of a virus. If a potential error is detected, boot is halted, allowing the user to boot from uncorrupted files. In another embodiment, an uniquely formatted floppy diskette is used as an access diskette serves as a hardware key to gain access. In another embodiment, a host controls information stored locally. In another embodiment, security from unauthorized access is provided once a valid user has legitimately accessed a computer. In response to a predefined hot key or a predetermined period of time during which the user has not provided input, portions of the computer are disabled. Upon entry of access information by the valid user, the disabled features are enabled. In another embodiment, access to the computer is made more difficult in response to invalid access attempts. In one embodiment, once a threshold number of invalid access attempts is reached, the computer is locked up, requiring reboot, thereby increasing the difficulty of a would be intruder to gain access to the computer. In one embodiment, once the threshold value is reached, it is reset to a lower value.
Abstract:
A method compensates for changes in drop mass of drops ejected by ink jets in a printhead of an ink jet imaging device. The method includes identifying an average of differences between drop placement position for ink drops on an image receiving member and default ink drop positions. The average of the differences is used to adjust a parameter of one or more ink jet driving signals in response to the average of the differences being greater than a predetermined threshold.
Abstract:
A method and system for creating an ethernet-formatted packet from an upstream DOCSIS packet. The upstream packet is first received along with packet characteristic data that is contained in physical layer prepend data and in the packet header. A packet tag is then created, based on the packet characteristic data. The packet characteristic data includes identifiers for the transmitting remote device and the channel over which the transmission is sent. Packet characteristic data also includes information about the physical characteristics of the transmission signal, such as the power level and time offset. The packet characteristic data also includes administrative information, such as the minislot count at which the packet is received and whether the packet was received in contention. The packet tag is appended to the payload of the upstream packet. Also appended to the payload is an encapsulation tag, and source and destination address headers. The result is a packet in an ethernet format. The resulting packet can therefore be sent using the ethernet protocol. The packet includes information that characterizes a DOCSIS packet. In a distributed cable modem termination system, this additional characterizing information can be used by processes further upstream, such as packet classification. An analogous operation can take place with respect to packets going downstream. Here, a DOCSIS packet is formed at an intermediate node, on the basis of a received ethernet-formatted packet.
Abstract:
A method of compensating for changes in drop mass of drop emitted by at least one ink jet of an ink jet imaging device is provided. The method comprises identifying a drop placement position on an image receiving member of an ink jet imaging device for at least one ink jet of a print head. The identified drop placement position for the at least one ink jet is compared to a default drop placement position for the at least one ink jet to determine a difference in drop placement position. A drive signal for the at least one ink jet is then adjusted in accordance with the difference in drop placement position.
Abstract:
A flip-flop structure with reduced set-up time is provided. The flip-flop includes the first master latch receiving a function data through the first switch controlled by a clock signal, the second master latch receiving a scan data through the second switch controlled by the clock signal, and a slave latch connected to the first master latch through the third switch controlled by the clock signal. The second master latch is coupled to the first master latch through the fourth switch controlled by the scan enable signal so that the scan enable signal controls whether the function data or the scan data becomes an output from the first master latch to the slave latch, and the slave latch is used to latch and transmit the output from the first master latch.