Abstract:
A circuit for protecting a load from an overvoltage can be integrated together with the load on the same chip by an MOS transistor manufacture process. This overvoltage protecting circuit is composed of a surge protection circuit, an overvoltage detecting circuit and a switching circuit. The surge protection circuit including two MOS transistors operates so that a surge voltage applied to a power supply receiving terminal is clamped by virtue of the source-drain breakdown voltage of the two MOS transistors, thereby absorbing the surge energy. The overvoltage detecting circuit including two MOS transistors operates so that a DC voltage supplied from the surge protection circuit is monitored with the source-drain voltage of the two MOS transistors taken as a reference voltage, thereby detecting an overvoltage. An overvoltage detection output brings an MOS transistor of the switching circuit into a turned-off condition to protect the load.
Abstract:
A semiconductor integrated circuit device is dislosed for self-monitoring presence/absence of a data flow and transmitting the data on the basis of the result of the monitoring. The semiconductor integrated circuit device comprises a plurality of data paths each further comprising at least two logic-circuit blocks. One of the data paths have data-arrival detector for detecting arrival of data and components on the other data paths operate synchronously with those on the data path having the data-arrival detector.
Abstract:
An information processing system has a plurality of processor circuits, each of the processor circuits including internal circuits and an internal processing result outputting circuit, the system having an internal data selection circuit connected to each of the processor circuits and at least one fault detection circuit. The internal processing result outputting circuit of each of the processor circuits outputs respective result data processed by respective ones of the internal circuits in the processor circuit. Each of the internal data selection circuit selects and outputs one selected result data output from the internal processing result outputting circuit of each of the processor circuits, at a predetermined timing. The fault detection circuit outputs a result of a comparison among the data selected by the respective internal data selection circuits of the processor circuits or among the data output at each predetermined timing by the processor circuits.
Abstract:
The present invention is intended to provide a conventional circuit apparatus which is highly tolerant to noises and operates at a higher speed than a completely complementary static CMOS circuit. To achieve this, circuit apparatus according to the present invention is provided with a plurality of CMOS static logic circuits which are series-connected and potential setting means which is connected to the output parts of these logic circuits and sets the outputs of the output parts to a low level in synchronization with a clock signal, thus propagating signals by operation of the NMOS circuit. In other words, a signal propagation delay occurs only when the N-type logic block conducts. Therefore circuit operation is speeded up and .alpha. particle noise and noises due to charge redistribution effect or leakage current can be prevented.
Abstract:
A semiconductor integrated circuit device having a plurality of logic circuits integrated on a semiconductor substrate is provided which can operate with a power source potential difference substantially less than 5 V. The logic circuit includes a bipolar transistor having a base and its collector-emitter current path coupled between a first power source terminal and an output terminal, together with at least one field effect transistor having its gate responsive to an input signal applied to an input terminal and its source-drain current path coupled between the first power source terminal and the base of the bipolar transistor. A semiconductor switch means is also provided which is responsive to the input signal applied to the input terminal for performing ON/OFF operations complementary to the ON/OFF operations of the bipolar transistor and which has a current path between its paired main terminals coupled between the output terminal and the second power source terminal. In order to improve the operating speed, a potential difference reducing element is provided having a current path between its paired main terminals coupled between the first power source terminal and the output terminal for reducing the potential difference, which is present between the first power source terminal and the output terminal based on the base-emitter forward voltage of the bipolar transistor when the bipolar transistor is ON.
Abstract:
A semiconductor integrated circuit device having a plurality of logic circuits integrated on a semiconductor substrate is provided which can operate with a power source potential difference substantially less than 5V. The logic circuit includes a bipolar transistor having a base and its collector-emitter current path coupled between a first power source terminal and an output terminal, together with at least one field effect transistor having its gate responsive to an input signal applied to an input terminal and its source-drain current path coupled between the first power source terminal and the base of the bipolar transistor. A semiconductor switch means is also provided which is responsive to the input signal applied to the input terminal for performing ON/OFF operations complementary to the ON/OFF operations of the bipolar transistor and which has a current path between its paired main terminals coupled between the output terminal and the second power source terminal. In order to improve the operating speed, a potential difference reducing element is provided having a current path between its paired main terminals coupled between the first power source terminal and the output terminal for reducing the potential difference, which is present between the first power source terminal and the output terminal based on the base-emitter forward voltage of the bipolar transistor when the bipolar transistor is ON.
Abstract:
A first converter circuit converts a state signal, whose level is constant or slowly varies during a predetermine period of time, into a pulse signal to allow the signal to propagate across an electrically insulating area. A second converter circuit converts the pulse signal, which has propagated through an insulating circuit, into the original state signal or a signal having the same characteristics as the original state signal.
Abstract:
A master unit sends a start signal to a slave unit. When receiving the start signal from the master unit, the slave unit sends, to the master unit, a synchronization field that is a data train (pulse signal) indicative of a transfer clock with which the slave unit is able to perform transferring and receiving operations. The master unit sends, to the slave unit, command data in accordance with the transfer clock indicated by the synchronization field sent from the slave unit. In response to the command data sent from the master unit, the slave unit sends, to the master unit, response data in accordance with the transfer clock indicated by the synchronization field. Thus, in a communication system employing a serial data transferring apparatus of the present invention, the master unit establishes the synchronization for the data transfer, while the slave unit is free from a burden of establishing the synchronization for the data transfer. A serial data transferring apparatus is realized which can simplify the structure of the slave unit, cut the total cost, and reduce noise.
Abstract:
The aim of the invention is to provide a battery controller which is able to secure the number of rewrite time as required without replacement. The battery controller including a plurality of memory groups 104a to 104n comprising nonvolatile memories rewritable on the basis of one unit or plural units, a switch for selecting a memory group and a reader/writer 102 for writing or reading data into or from the memory groups, wherein the switch selects sequentially a memory group, according to a signal for writing from outside.
Abstract:
A low-cost vehicle control system and a car using the system controls radiation of an actuator driver and thereby reduces the radiation component cost and allows downsizing of an electronic control unit to improve the versatility. The vehicle control system has an electronic control unit, a plurality of actuators and actuator drivers for driving the actuators at the actuator side. The actuator drivers, respectively, have a independent self-diagnosis section, a self-protection section, and a communication control section and are dispersed correspondingly to the actuators.