Abstract:
A photodiode array spectrometer comprises an arry (40) of photosensitive elements for receiving a beam of light. Light impinging on a photodiode causes discharging of the associated capacitors. The capacitors are recharged periodically by a charge amplifier via a video line (30) by closing transfer switches (SW1, . . . , SW 768) associated with the photosensitive elements, repectively. The switches are group together in several segments which are independently addressable such that during a recharge scan only selected groups of photodioldes are recharged. The information which segments are to be sctivated, i.e. which groups of switches are to be closed, is contained in a segment control block (43). An integration control block (46) additionally permits to adjust the time intervals between successive recharge cycles separately for each selected segment. The invention permits to select regions of interest of the photodiode array for a specific application, whereas other regions are ignored for that application, leading to a reduced data rate with high spectral resolution and sensitivity.
Abstract:
A spectrophotometer for operating in the reflection or transmission mode includes a collecting lens for directing non-collimated light from the sample being analyzed onto a diffraction grating. An imaging lens focuses diffracted light onto an array of sensors. Because the collecting lens directs non-collimated light at the grating, a substantially linear spectrum can be imaged on the array.
Abstract:
An optical system for a multidetector array spectrophotometer which includes multiple light sources for emitting light of selected wavelength ranges and means for selectively transmitting the selected wavelength ranges of light to respective slits of a multi-slit spectrograph for multiple wavelength range detection. The spectrograph has two or more slits which direct the selected wavelength ranges of the light spectra to fall upon a dispersive and focusing system which collects light from each slit, disperses the light by wavelength and refocuses the light at the positions of a single set of detectors.
Abstract:
A method of making a corrected plane holographic grating within one band of wavelengths, intended for use in a diffraction apparatus in which light emitted by an entry source (1) is collimated by a spherical mirror (2) to the grating (4), which reflects parallel pencils to another spherical mirror (7), a focusing mirror, is disclosed. An auxiliary holographic grating (25) is created by the interference on a spherical surface (15) of a parallel pencil of light produced by the spherical mirror (7) subsequent to reflection onto a plane mirror (12) and of a divergent pencil deriving from the center of the surface (15). The auxiliary grating, corrected by the interference on a plane surface (22) of a parallel pencil produced by the spherical mirror (2) and of another parallel pencil produced by the auxiliary grating (25) illuminated from the center of the spherical surface, is then recorded.
Abstract:
A spectroscope apparatus includes means for separating light from an object to be measured into spectral components, means for mixing that part of the spectral components which exists in a desired wavelength range, and means for forming an image of the to-be-measured body of mixed light. The image thus obtained is very useful for observing the state of a combustion flame, the progress of photochemical reaction, the progress of biochemical reaction, a desired tissue in a cell, and the state of a flame for analyzing a solution which contains a metal ion, by flame spectrophotometery, that is, provides accurate information and makes possible a precise control operation.
Abstract:
An optical system for use in a spectrometer or monochromator employing a mirror which reflects electromagnetic radiation from a source to converge with same in a plane. A straight grooved, varied-spaced diffraction grating receives the converging electromagnetic radiation from the mirror and produces a spectral image for capture by a detector, target or like receiver.
Abstract:
A very wide spectral coverage grating spectrometer which gathers light from a scene being viewed and collimates that light. A mosaic grating is disposed in collimated space which disperses the collimated light. The dispersed light is focused onto a detector array.
Abstract:
Rigid supporting structures for the components of high precision optical instruments, such as interferometers or monochromators, have hitherto been based on massive castings. Such castings suffer from residual non-recoverable changes of shape during temperature cycling, due to the differential temperatures set up in the castings. The invention provides a rigid structure assembled from a number of flat sheet structural elements. Each sheet element is substantially rigid in its own plane and is attached to one or more other sheets at points of contact which are such that the edge of one sheet bears against the surface of another sheet with the planes of the two sheets being perpendicular in the region of the points of contact. An open ended rectangular box structure may be assembled from two sheets, each with a single right angled fold. Each point of contact and attachment may be formed as a foot standing proud from the remainder of the sheet edge.
Abstract:
In a Littrow spectroscope including a concave mirror for reflecting light from a source, a diffraction grating for further reflecting the light reflected by the mirror, the grating being made rotatable to allow the mirror to re-reflect the light therefrom, and an exit on which the light re-reflected by the mirror is focused; a stray-light suppressor in the form of a strip is disposed in front of, and horizontally in parallel with the longitudinal central axis of, the mirror. The suppressor is held in front of the mirror at a distance of (L1-L2), where L1 is the distance between the mirror and the grating and L2 is the distance between the grating and the exit. The suppressor portion upon which the stray light from the diffraction grating impinges is tapered.
Abstract:
The invention relates to an apparatus for carrying out spectral analysis which is provided with diffraction grating means (1-6, 12-15) for dispersing the incident radiation (3). In order to achieve a high spectral resolution in an economically advantageous manner, the diffraction grating means comprises a plurality of grating surfaces (1-6, 12-15) which are arranged so that the radiation (3), after diffraction from the first grating surface (1, 12), is subject to diffraction also in the other grating surfaces (2-6, 13-15). The grating surfaces hereby have such an orientation that the wavelength dispersion at diffraction from one grating surface acts to increase the wavelength dispersion at diffraction from the following grating surfaces.