Abstract:
Systems and techniques are disclosed to enhance the efficiency of available bandwidth between UEs and base stations. A UE transmits a sounding reference signal to the base station, which characterizes the uplink channel based on the SRS received and, using reciprocity, applies the channel characterization for the downlink channel. The base station may form the beam to the UE based on the uplink channel information obtained from the SRS. As the downlink channel changes the base station needs updated information to maintain its beamforming, meaning it needs a new SRS. Transmission of the SRS takes resources; to minimize this, the UE or the base station can determine a period during which the downlink channel will predictably remain coherent and set up a schedule for sending SRS. Alternatively, the UE or the base station can determine on demand that the channel is losing coherence and initiate an on demand SRS.
Abstract:
Wireless communication devices are adapted to facilitate non-orthogonal underlay transmissions. In one example, wireless communication devices can receive a wireless transmission via a particular time and frequency resource, where the wireless transmission includes a first signal employing a modulation associated with orthogonal wireless communication, and a second signal employing a modulation associated with non-orthogonal wireless communication. The wireless communication device can decode the first signal and the second signal. In another example, wireless communication devices may transmit a first signal utilizing a first type of modulation associated with non-orthogonal wireless communication, where the first signal is transmitted over at least a portion of a time and frequency resource scheduled for a second signal from a second wireless communication device, the second signal utilizing a second type of modulation associated with orthogonal wireless communication. Other aspects, embodiments, and features are also included.
Abstract:
Aspects of the disclosure provide for a thin control channel structure that can be utilized to enable multiplexing of two or more data transmission formats. For example, a thin control channel may carry information that enables ongoing transmissions utilizing a first, relatively long transmission time interval (TTI) to be punctured, and during the punctured portion of the long TTI, a transmission utilizing a second, relatively short TTI may be inserted. This puncturing is enabled by virtue of a thin channel structure wherein a control channel can carry scheduling information, grants, etc., informing receiving devices of the puncturing that is occurring or will occur. Furthermore, the thin control channel can be utilized to carry other control information, not being limited to puncturing information. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Methods and apparatus for position location in a wireless network. In an aspect, a method is provided that includes determining whether a symbol to be transmitted is an active symbol, wherein the symbol comprises a plurality of subcarriers, and encoding identification information on a first portion of subcarriers if it is determined that the symbol is the active symbol. The method also includes encoding idle information on a second portion of subcarriers if it is determined that the symbol in not the active symbol. In an aspect, an apparatus includes detector logic configured to decode a plurality of symbols to determine identification information that identifies a plurality of transmitters, and to determine a plurality of channel estimate associated with the plurality of transmitters. The apparatus also includes position determination logic configured to calculate a device position based on the plurality of transmitters and the plurality of channel estimates.
Abstract:
Methods, systems, and devices for wireless communications are described. For a set of scheduled transmission instances of a data communication, a transmitting network node may determine a first spatial filter to apply for a first subset of the scheduled transmission instances configured to provide the data communication and a second spatial filter to apply for a second subset of the scheduled transmission instances configured to allow energy harvesting at an energy harvesting device. In some cases, the transmitting network node may indicate a first quasi co-location (QCL) relation to use for the first subset of the scheduled transmission instances configured to provide the data communication to the network node receiving the data transmissions, and the transmitting network node may indicate a second QCL relation to use for the second subset of the scheduled transmission instances configured to allow energy harvesting to the energy harvesting device.
Abstract:
Wireless communication devices, systems, and methods related to power saving, including during connected mode operation and for extended reality (XR) data communications with or without discontinuous reception (DRX), are provided. For example, a method of wireless communication includes receiving, while in a connected mode, a configuration based on data traffic for the wireless communication device, the configuration indicating: a first zone associated with a first set of operating parameters for the wireless communication device; and a second zone associated with a second set of operating parameters for the wireless communication device, the second set of operating parameters being different than the first set of operating parameters; operating in the first zone with the first set of operating parameters to monitor for a first downlink communication signal; and operating in the second zone with the second set of operating parameters.
Abstract:
This disclosure provides methods, devices and systems for channel sounding for wireless communications. Some implementations more specifically relate to scheduling sounding reference signal (SRS) resource sets for wireless devices having more than 4 receive (RX) antenna ports. In some implementations, a base station may determine an antenna switching capability of a user equipment (UE). The antenna switching capability indicates a number of RX antenna ports of the UE. The base station schedules a number of SRS resource sets for the UE based at least in part on the number of RX antenna ports in excess of four. For example, the number of RX antenna ports may be equal to 8. As another example, the number of RX antenna ports may be equal to 6. The base station further receives, from the UE, uplink transmissions of one or more SRS resources for each of the scheduled SRS resource sets.
Abstract:
Aspects relate to supporting power control for physical uplink control channel (PUCCH) transmissions on an uplink secondary component carrier (SCC) of a wireless communication system. In some aspects, a user equipment (UE) receives a power control configuration from a base station for use by the UE for a PUCCH transmission on a selected uplink SCC. The UE then transmits, based at least in part on the power control configuration, the PUCCH to the base station on the selected uplink SCC. Closed-loop and open-loop power control examples are provided. In some aspects, common or shared power control configurations are provided by the base station for use with each component carrier of a PUCCH group. In other aspects, carrier-specific power control configurations are provided by the base station.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine a resource availability based at least in part on measurement information, wherein the measurement information includes information related to a first measurement regarding a set of resources and a second measurement regarding the set of resources, and wherein the measurement information relates to self-interference associated with a transmission of the UE. The UE may communicate using a resource, of the set of resources, based at least in part on the resource availability. Numerous other aspects are described.
Abstract:
In an aspect, a UE obtains information (e.g., UE-specific information) associated with a set of triggering criteria (e.g., from a server, a serving network, e.g., in conjunction with or separate from a set of neural network functions) for a set of neural network functions, the set of neural network functions configured to facilitate positioning measurement feature processing at the UE, the set of neural network functions being generated dynamically based on machine-learning associated with one or more historical measurement procedures. The UE obtains positioning measurement data associated with a location of the UE, and processes the positioning measurement data into a respective set of positioning measurement features based at least in part upon the positioning measurement data and at least one neural network function from the set of neural network functions that is triggered by at least one triggering criterion from the set of triggering criteria.