Abstract:
Systems and method of embodiments herein operate to conserve battery power of user equipment (UE). Embodiments determine whether waking up a UE receiver would be beneficial and based on the determination, the UE either wakes up the receiver or returns to sleep. Embodiments determine whether to wake up the receiver by performing pre-wake up (PWU) operation which either wakes up the receiver in a low power mode or wakes up the UE's wake up receiver. It may be determined whether a wake up (WU) signal is received during a PWU stage. If a WU signal is received during the PWU stage the UE may perform a full wake up of the receiver. If a WU signal is not received the UE may return to idle mode. In embodiments, WU (Wake Up) DRX cycles are supplemented with a Full DRX (Discontinuous Reception) cycle.
Abstract:
Methods, systems, and devices for wireless communication are described. A wireless device may initiate a successive decoding process for an encoded code block received at the wireless device, and generate, using a successive decoder, one or more candidate paths for a first portion of the code block, where the first portion of the code block includes a first data portion and a first data check portion. The wireless device may then perform a checking function on respective first data portions for the one or more candidate paths using respective first data check portions, and determine whether to terminate the successive decoding process prior to completing decoding of the encoded code block based at least in part on determining whether the checking function for each of the one or more candidate paths for the first data portion has failed the checking function.
Abstract:
Methods, systems, and devices for wireless communication are described. A transmitter, such as a user equipment and/or a base station, may perform polar coding to encode bits. The polar coding may be associated with a plurality of component channels associated with a polar code length. The transmitter may interleave the encoded bits. The transmitter may map the interleaved encoded bits to a modulation symbol. The interleaving and mapping of each encoded bit may be based on an asymmetry of a polar code construction. The transmitter may transmit the interleaved encoded bits based on the mapping.
Abstract:
Methods, systems, and devices are described for wireless communication. In one method, a method of wireless communication at a user equipment (UE) includes receiving a synchronization signal. The synchronization signal may be common to a plurality of cells within a network. The method further includes acquiring a timing of the network based on the synchronization signal, and transmitting a pilot signal in response to acquiring the timing of the network. The pilot signal may identify the UE and be concurrently receivable by the plurality of cells within the network. Other aspects, features, and embodiments are also claimed and described.
Abstract:
Methods, systems, and devices are described for wireless communication at a UE. A base station may select a hybrid pilot configuration including a relatively sparse periodic pilot and a dense pilot embedded in one or more symbols of a low latency burst. A user equipment (UE) may generate a long term statistical average channel estimate based on the periodic pilot and an instantaneous channel estimate (e.g., for demodulation) based on the dense pilot embedded in the low latency burst. The UE may refine the instantaneous channel estimate by converting a control channel embedded with the burst. In some instances, the base station may embed the dense pilots in the first symbol of a burst and transmit subsequent low latency symbols with a reduced density pilot (or without pilot tones).
Abstract:
Providing for improved implementation of supplemental wireless nodes in a wireless base station deployment is described herein. By way of example, a donor base station is configured to send a schedule of data transmission to and from a set of UEs served by the base station, and further can provide the schedule and identifiers for the set of UEs to one or more wireless nodes serving the base station. Respective access channel measurements between respective UEs and respective wireless nodes can be forwarded to the base station, which in turn can identify optimal access channels for the set of UEs. Additionally, the donor base station can schedule multiple data transmissions on these access channels in a common transmission time slot, to achieve cell-splitting gains for the data transmissions. Range boosting, differential coding, and supplemental channel quality mechanisms are also provided for various wireless communication arrangements described herein.
Abstract:
Reported CSI may not reflect non-cancelable CRS interference received from an interfering cell, such as when the CSI is computed when CRS interference is not received. To address the issue, a user equipment (UE) may determine an interference cancelation/suppression efficiency (CSE) associated with canceling/suppressing interference from interfering cells. In addition, based on the determined CSE, a UE may compute CSI such that the CSI reflects the true cancelation efficiency of the UE with respect to interfering cell signals. When computing the CSI based on the determined CSE, the UE may report that the CSI is worse than it is to reflect the UE's true cancelation efficiency with respect to the interfering cell signals.
Abstract:
Techniques are described for wireless communication. A first method includes measuring, by a first device, a condition of a wireless channel; and generating at least one channel side information feedback message based on the measured condition of the wireless channel. The at least one channel side information feedback message provides information on a relationship of a set of parameters, including a data rate parameter, an error probability parameter, and at least one of a deadline parameter or a transmission link parameter. A second method includes measuring, by a first device, interference on a wireless channel; identifying an interfering device for the wireless channel based on the measurement; and generating a channel side information feedback message based on the measured interference on the wireless channel. The channel side information feedback message indicates the interfering device for the wireless channel and a correlation of interference from the interfering device with time or frequency.
Abstract:
Techniques are described for wireless communication. A first method includes measuring, by a first device, a condition of a wireless channel; and generating at least one channel side information feedback message based on the measured condition of the wireless channel. The at least one channel side information feedback message provides information on a relationship of a set of parameters, including a data rate parameter, an error probability parameter, and at least one of a deadline parameter or a transmission link parameter. A second method includes measuring, by a first device, interference on a wireless channel; identifying an interfering device for the wireless channel based on the measurement; and generating a channel side information feedback message based on the measured interference on the wireless channel. The channel side information feedback message indicates the interfering device for the wireless channel and a correlation of interference from the interfering device with time or frequency.
Abstract:
Apparatuses and methods for performing asynchronous multicarrier communications are provided. One such method involves generating, at a first wireless device, a waveform including one or more carriers, shaping the waveform to reduce interference between the waveform and adjacent waveforms, and transmitting, on a spectrum, the shaped waveform asynchronously.