Abstract:
This invention discloses an ion implantation apparatus with multiple operating modes. It has an ion source and an ion extraction means for extracting a ribbon-shaped ion beam therefrom. The ion implantation apparatus includes a magnetic analyzer for selecting ions with specific mass-to-charge ratio to pass through a mass slit to project onto a substrate. Multipole lenses are provided to control beam uniformity and collimation. The invention further discloses a two-path beamline in which a second path incorporates a deceleration system incorporating energy filtering. The invention discloses methods of ion implantation in which the mode of implantation may be switched from one-dimensional scanning of the target to two-dimensional scanning, and from a simple path to an s-shaped path with deceleration.
Abstract:
An invention providing a scanning electron microscope composed of a monochromator capable of high resolution, monochromatizing the energy and reducing chromatic aberrations without significantly lowering the electrical current strength of the primary electron beam. A scanning electron microscope is installed with a pair of sectorial magnetic and electrical fields having opposite deflection directions to focus the electron beam and then limit the energy width by means of slits, and another pair of sectorial magnetic and electrical fields of the same shape is installed at a position forming a symmetrical mirror versus the surface containing the slits. This structure acts to cancel out energy dispersion at the object point and symmetrical mirror positions, and by spatially contracting the point-converged spot beam with a converging lens system, improves the image resolution of the scanning electron microscope.
Abstract:
The present invention relates to e.g. a charged particle beam energy width reduction system for a charged particle beam with a z-axis along the optical axis and a first and a second plane, comprising, a first element (110) acting in a focusing and dispersive manner, a second element (112) acting in a focusing and dispersive manner, a first quadrupole element (410) being positioned such that, in operation, a field of the first quadrupole element overlaps with a field of the first element acting in a focusing and dispersive manner, a second quadrupole element (412) being positioned such that, in operation, a field of the second quadrupole element overlaps with a field of the second element acting in a focusing and dispersive manner, a first charged particle selection element (618) being positioned, in beam direction, before the first element acting in a focusing and dispersive manner, and a second charged particle selection element (616;716) being positioned, in beam direction, after the first element acting in a focusing and dispersive manner. Thereby, a virtually dispersive source-like location without an inherent dispersion limitation can be realized.
Abstract:
An electron beam detector detects a peak of a spectrum, and when a peak position is deviated from a reference position on the electron beam detector, a controller for controlling an electron beam position on the electron beam detector is used to correct a deviation. An electron energy loss spectrum is measured while controlling correction a deviation between an electron beam position on a specimen, and a peak position of the spectrum, and a spectrum measuring with the electron beam detector.
Abstract:
One embodiment relates to an apparatus for generating a dual-energy electron beam. A first electron beam source is configured to generate a lower-energy electron beam, and a second electron beam source is configured to generate a higher-energy electron beam. A holey mirror is biased to reflect the lower-energy electron beam. The holey mirror also includes an opening therein through which passes the higher-energy electron beam, thereby forming the dual-energy electron beam. A prism array combiner introduces a first dispersion between the lower-energy electron beam and the higher-energy electron beam within the dual-energy electron beam. A prism array separator is configured to separate the dual-energy electron beam traveling to a substrate from a scattered electron beam traveling away from the substrate. The prism array separator introduces a second dispersion which compensates for the dispersion of the prism array combiner. Other embodiments are also disclosed.
Abstract:
One embodiment disclosed relates to a Wien filter for a charged-particle beam apparatus. The charged-particle beam is transmitted through the Wien filter in a first direction. A magnetic field generation mechanism is configured to generate a magnetic field in a second direction which is perpendicular to the first direction, and an electrostatic field generation mechanism is configured to generate an electrostatic field in a third direction which is perpendicular to the first and second directions. The field generation mechanisms are further configured so as to have an offset between the positions of the magnetic and electrostatic fields along the first direction. Another embodiment disclosed relates to a Wien filter type device wherein the magnetic force is approximately twice in strength compared to the electrostatic force. Other embodiments are also disclosed.
Abstract:
An imaging energy filter for electrons and other charged particles filters an object formed by these particles at the filter inlet by means of an energetic selection of charged particles in the region of a dispersion aperture. The filter includes two concentric and spherical electrodes, which produce an electrostatic field that deflects the charged particles at an angle α that is greater than π and less than 2π. The deflector, operating as a deflecting element that generates a deflection field, is disposed at an intersection point of the inlet axis and the outlet axis and in a plane of symmetry of the angle α, wherein the plane of symmetry simultaneously is an electro-optical plane. The deflection field generated by the deflecting element deflects the charged particles by an angle π−α/2, leading to a total deflection angle of 2π and co-linearity of the inlet axis and outlet axis.
Abstract:
This invention discloses an ion implantation apparatus with multiple operating modes. It has an ion source and an ion extraction means for extracting a ribbon-shaped ion beam therefrom. The ion implantation apparatus includes a magnetic analyzer for selecting ions with specific mass-to-charge ratio to pass through a mass slit to project onto a substrate. Multipole lenses are provided to control beam uniformity and collimation. The invention further discloses a two-path beamline in which a second path incorporates a deceleration system incorporating energy filtering. The invention discloses methods of ion implantation in which the mode of implantation may be switched from one-dimensional scanning of the target to two-dimensional scanning, and from a simple path to an s-shaped path with deceleration.
Abstract:
An ion beam energy monitor system and method thereof. A physical field generator generates a physical field in a direction not parallel to an ion beam, refracting the ion beam, and a receiving device located on the path of the refracted ion beam receives the ion beam and calculates the energy thereof according to a collision distribution of ions of the ion beam. The output energy of the ion beam is thus being well adjusted.
Abstract:
An energy filter with reduced aberration. The energy filter has a first stage of filter for receiving an electron beam entering along the optical axis and for focusing the beam in one direction vertical to the optical axis and a second stage of filter positioned along the optical axis behind the first stage of filter. The beam once focused by the first stage of filter is made to enter the second stage of filter. In the second stage of filter, the orbit of the electron beam is inverted with respect to the focal point. The two stages of filters are identical in length taken along the optical axis. The first and second stages of filters have electric and magnetic quadrupole fields, respectively, along the optical axis. These quadrupole fields make an angle of 45 degrees to the optical axis to achieve astigmatic focusing.