Abstract:
Uplink reporting and logical channel prioritization in multiflow operation is described. In some embodiments, uplink reporting for multiflow operation utilizes bearer level splitting where the UE associates bearers or logical channel groups (LCGs) with cells for uplink reporting. In some embodiments, uplink reporting for multiflow operation utilizes packet level splitting where the UE groups buffers for all LCGs into a common pool for uplink reporting. In packet level splitting embodiments, the UE may perform uplink reporting based on the total amount of data available for transmission in the common buffer pool or by applying scaling coefficients associated with the serving cells. Some embodiments manage mapping of logical channel payloads to uplink grants for multiflow operation.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives extended bandwidth information indicating availability of an extended bandwidth. The extended bandwidth includes a base carrier and an extension carrier within a legacy guard band of the base carrier. The apparatus receives data on a downlink in the extension carrier based on the extended bandwidth information.
Abstract:
Techniques for wireless communication are described, which may include establishing a connection, by a user equipment (UE), with a first and second evolved NodeB (eNB), wherein each of the eNBs provide radio resources to the UE for respective uplink communications; receiving from the first eNB, at the UE, an indication including an allocation of uplink transmit power between the first eNB and at least the second eNB; and transmitting the uplink communications from the UE to the first and second eNBs based on the indication. The techniques may further include coordinating, by a first eNB, multi-connectivity communication for a UE with at least the first eNB and a second eNB; determining for the UE, at the eNB, an allocation of uplink transmit power between the first eNB and at least the second eNB; and transmitting an indication including the allocation of uplink transmit power allocation from the first eNB to the UE.
Abstract:
A user equipment (UE) communicating in a carrier aggregation (CA) or multi-connectivity operation using more than one component carrier (CC), where at least one of the CCs is enabled to use evolved interference management for traffic adaptation (eIMTA), adapts the hybrid automatic repeat request (HARQ) timing of the UE communications based on changes in the eIMTA and configurations. The HARQ timing includes HARQ acknowledgement (ACK) timing or HARQ scheduling timing.
Abstract:
Systems and methodologies are described that facilitate assigning resources for an anchor carrier and an additional carrier with a grant message. The grant message communicated with an anchor carrier can include resource information a plurality of carriers. Moreover, the systems and methodologies that facilitate identifying control information for an anchor carrier and/or an additional carrier based upon an operating mode, wherein the operating mode is a legacy mode or an extended mode. Based on the operating mode, particular resources associated with control regions are monitored for control information for respective anchor carrier(s) or additional carrier(s).
Abstract:
Certain aspects of the present disclosure propose a method and an apparatus for calculating maximum number of hybrid automatic repeat request (HARQ) processes per component carrier and/or number of soft buffer bits for HARQ operation by taking into account the subframes which are available for a physical downlink shared channel (PDSCH) for a user equipment (UE) or a group of UEs. In the proposed method, the subframes that are not available for a PDSCH for at least a UE (either by specification or by configuration) may not be considered in calculating the number of soft buffer bits.
Abstract:
This disclosure provides systems, methods, and apparatuses for supporting network transmissions using unicast sidelink communications. A base station (BS) may transmit a set of encoded packets to a number of user equipment (UEs) and receive feedback messages from the UEs that indicate sets of decoded packets. Based on the feedback messages, the BS may transmit an updated set of encoded packets based on a difference between the set of encoded packets and the union of decoded packets. The BS may transmit an instruction to a first UE to transmit a unicast sidelink communication to a second UE that includes a set of missed packets that includes one or more decoded packets that were decoded by the first UE but were not decoded by the second UE. The first UE may transmit the unicast sidelink communication to the second UE.
Abstract:
Methods, systems, and devices for updating timing advance values for deactivated cells are described. A user equipment (UE) may transmit, to a first cell that is deactivated, a random access message for a timing advance probing procedure. The UE may transmit the random access message to the first cell. In some examples, the UE may receive, from a second cell, an activation command that activates the first cell and an indication of a timing advance value for the first cell generated based on the random access message. In other examples, the UE may monitor for a random access response (RAR) message from the first cell, the RAR message including an activation command that activates the first cell and an indication of a timing advance value generated based on the random access message. The UE may communicate with the first cell based on the activation command and the timing advance value.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive configuration information corresponding to a Layer 1 or Layer 2 (L1/L2) inter-cell mobility operation associated with an L1/L2 mobility configured cell set. The UE may receive, based on the configuration information, a joint timing advance (TA) and cell activation medium access control control element (MAC CE), wherein the joint TA and cell activation MAC CE comprises a TA command and a cell activation command. Numerous other aspects are described.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive from a network entity first control signaling identifying, of multiple cell groups configured at the UE, an inter-cell mobility configuration for a set of one or more cell groups for use at the UE. In some examples, each cell group of the multiple cell groups may include a primary cell (PCell) and zero or more secondary cells (SCells). The UE may transmit a measurement report for each cell group of the set of one or more cell groups for inter-cell mobility. The UE may receive, at least in part in response to transmitting the measurement report, second control signaling activating or deactivating a primary cell group for inter-cell mobility from one or more cell groups of the set of one or more cell groups.