Abstract:
A method for optimizing data retry mechanisms is described. The method includes attempting to originate a data call on an evolved high rate packet data system. The method also includes determining that originating the data call has failed. A type of failure that caused the data call to fail is determined. The frequency of data call origination attempts is reduced based on the type of failure.
Abstract:
Techniques for performing WLAN system scanning and selection are described. A terminal performs multiple iterations of scan to detect for WLAN systems. A scan list containing at least one WLAN system to detect for is initially determined For each scan iteration, a scan type may be selected from among the supported scan types. The selected scan type may indicate passive scan or active scan, frequency channels to scan, etc. A scan may be performed based on the selected scan type. Signal strength measurements are obtained for access points received during the scan and used to identify detected access points. After all scan iterations are completed, candidates access points are identified based on the scan results, e.g., based on the signal strength measurements for the detected access points and a detection threshold. The best candidate access point may be selected for association by the terminal
Abstract:
An apparatus operable in a communication system and having the capability to discard an internet protocol address is described. The apparatus is configured to receive an assignment of a first internet protocol address of a first type for a first application and a second internet protocol address of a second type for a second application for a data connection to a network. The apparatus is also configured to determine that the apparatus is currently not able to handle both the first internet protocol address and the second internet protocol address. The apparatus is further configured to determine an internet protocol address to discard, and discard the determined internet protocol address.
Abstract:
Aspects disclosed herein relate to effectively handling failure and retry mechanisms during pre-registration for an eHRPD optimized handover. In one example, a UE may be equipped to detect one or more instances of failure during a pre-registration procedure as part of an optimized handover process. The UE may further be equipped to perform one or more pre-registration retry processes based on the detected one or more instances of failure. In one aspect, the one or more instances of failure may include any combination of a permanent LTE connection failure, a temporary LTE connection failure, a session negotiation failure, a virtual connection failure when bringing up a data call, a link control protocol (LCP) failure, etc.
Abstract:
Systems, apparatus and methods for facilitating identification and/or acquisition of an access point are provided. Methods can include transmitting or receiving access point information (“API”) indicative of an identification of the access point (“AP”). The API can be provided at the AP through hardwiring or receipt of configuration information input by a user or transmitted to the AP by a network operator through Over-The-Air (“OTA”) signaling. The API can be computer-readable and, in some embodiments, the API can also be human-readable. The API can be transmitted on a paging channel from which user equipment (“UE”) can receive information. The frequency at which the API is transmitted can be fixed, dynamic and/or configurable. Upon receipt of the API, acquisition of the AP is attempted if the AP is determined to be a permitted AP.
Abstract:
In a method for managing quality of service (QoS) resources during handoff across communication systems having different grades of QoS awareness, an access terminal (AT) determines that handoff has occurred from a QoS unaware system to a QoS aware system. The AT also determines whether there are any allocated, unrequested QoS resources. If one or more allocated, unrequested QoS resources are identified, the AT requests that the QoS aware system release the one or more allocated, unrequested QoS resources. The AT also determines whether there are any requested, unallocated QoS resources. If one or more requested, unallocated QoS resources are identified, the AT requests that the QoS aware system allocate the one or more requested, unallocated QoS resources to the application.
Abstract:
Systems, apparatus and methods for facilitating identification and/or acquisition of an access point are provided. Methods can include transmitting or receiving access point information (“API”) indicative of an identification of the access point (“AP”). The API can be provided at the AP through hardwiring or receipt of configuration information input by a user or transmitted to the AP by a network operator through Over-The-Air (“OTA”) signaling. The API can be computer-readable and, in some embodiments, the API can also be human-readable. The API can be transmitted on a paging channel from which user equipment (“UE”) can receive information. The frequency at which the API is transmitted can be fixed, dynamic and/or configurable. Upon receipt of the API, acquisition of the AP is attempted if the AP is determined to be a permitted AP.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in which 1×CSFB for communication of SMS messages in an LTE environment may be avoided. An IWS may receive a paging request message from a MSC, wherein the paging request message includes a first SMS service option indicating communication of a SMS message using a first RAT. The IWS may avoid an ESR procedure by analyzing the first SMS service option in the paging request message. Further the IWS may establish a common channel connection between the IWS and a target UE using a second RAT, wherein the first RAT and the second RAT are different.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus initiates a process for reselection from a first network (e.g., C2K) to a second network (e.g., LTE) by performing a measurement on a frequency indicated in a neighbor list received from a first cell in the first network. The neighbor list includes information indicating at least one frequency associated with the second network. The apparatus creates a state (e.g., starts an EUTRAReselect timer) associated with the frequency based on the measurement. The apparatus moves (e.g., performs an idle HO) from the first cell to a second cell in the first network. The apparatus determines whether to maintain the state upon the move from the first cell to the second cell.
Abstract:
Systems and methods for policing traffic in communications systems are described herein. According to systems and methods herein, tokens are generated for a packet data network based on a peak transmission rate associated with the packet data network. Packets are selected for transmission over the packet data network based on availability of tokens.