Abstract:
A thermally regulated amplifier system includes an amplifier unit, a temperature-sensing unit and a controller. The amplifier unit includes a power amplifier that has an adjustable gain function. The controller receives temperature readings from the temperature-sensing unit, computes the gain G(n) of the amplifier unit, and provides the computed gain of the amplifier G(n) to the power amplifier unit.
Abstract:
A compensation circuit adapted to receive an input signal for a circuit element to be compensated. The input signal is used as an address to a memory at which a compensated signal is stored. The stored compensated signal is output to the circuit element as the compensated signal therefor. In a specific implementation, the command input is received by a shift register. The shift register converts a serial input to a parallel output. The parallel output of the shift register is combined with the output of a temperature sensor to provide an address for the memory. The command input data includes an address to the particular circuit element to be compensated. The temperature data is used to select a particular page of memory and the remainder of the command input data is used to select data from that page for output as the compensated signal for the selected element. In the illustrative embodiment, the components compensated are automatic gain control amplifiers.
Abstract:
A temperature compensation circuit comprises a temperature coefficient circuit that generates a temperature coefficient that is temperature dependent and a compensation circuit that generates a compensation signal based on an indication of temperature of an amplifier and the temperature coefficient, and based on the compensation signal, a gain of the amplifier is adjusted to improve amplifier linearity during data bursts.
Abstract:
A thermally regulated amplifier system includes an amplifier unit, a temperature-sensing unit and a controller. The amplifier unit includes a power amplifier that has an adjustable gain function. The controller receives temperature readings from the temperature-sensing unit, computes the gain G(n) of the amplifier unit, and provides the computed gain of the amplifier G(n) to the power amplifier unit.
Abstract:
A thermally regulated amplifier system includes an amplifier unit, a temperature-sensing unit and a controller. The amplifier unit includes a power amplifier that has an adjustable gain function. The controller receives temperature readings from the temperature-sensing unit, computes the gain G(n) of the amplifier unit, and provides the computed gain of the amplifier G(n) to the power amplifier unit.
Abstract:
A thermally regulated amplifier system includes an amplifier unit, a temperature-sensing unit and a controller. The amplifier unit includes a power amplifier that has an adjustable gain function. The controller receives temperature readings from the temperature-sensing unit, computes the gain G(n) of the amplifier unit, and provides the computed gain of the amplifier G(n) to the power amplifier unit.
Abstract:
An amplifier circuit comprises a detection power input circuit for receiving an RF signal, and a bias circuit that includes an output for generating a bias signal in response to a reference control voltage. The power detector further comprises a detection circuit for generating a power control voltage having a voltage characteristic that offsets temperature characteristics of the received RF signal. The amplifier circuit further comprises a power amplifier coupled to the bias circuit. The power amplifier includes a driver stage providing the RF signal. The detection circuit compensates temperature variation of the inputted detection voltage of the received RF signal.
Abstract:
A high frequency power amplifier circuit includes amplifying devices whose control terminals (gate or base terminals) are supplied with a bias voltage. The high frequency power amplifier circuit keeps constant the bias voltage so that the amplifying devices operate in a saturation region. The high frequency power amplifier circuit controls an operating power supply voltage supplied to the amplifying devices in accordance with an output request level to control output power. A device (diode) having temperature dependency is provided for an operating power supply voltage control circuit that controls the operating power supply voltage for the amplifying devices in accordance with the output request level. The operating power supply voltage control circuit is configured to generate the operating power supply voltage corresponding to the device's temperature characteristics and supply it to the amplifying devices.
Abstract:
Mobile communication equipment comprises a power amplifier for amplifying a transmission signal and a feedback circuit for providing feedback to allow the above-described power amplifier to output a transmission-power set value. The feedback circuit comprises an error detection unit for detecting an error between a power value obtained by detecting a portion of the power of the transmission signal amplified by the power amplifier and the transmission-power set value specified by the above-described transmission-power specifying unit, a Loop-gain generating unit for periodically switching two different loop-gain values at a predetermined time ratio to output one of them, a loop-gain multiplying unit for multiplying the error detected by the error-detection unit by the loop-gain value outputted from the loop-gain generating unit to output an error value that results from the multiplication, and a feedback-amount generating unit for integrating the error value outputted from the loop-gain multiplying unit to generate a specific amount of the feedback.
Abstract:
A high frequency power amplifier circuit includes amplifying devices whose control terminals (gate or base terminals) are supplied with a bias voltage. The high frequency power amplifier circuit keeps constant the bias voltage so that the amplifying devices operate in a saturation region. The high frequency power amplifier circuit controls an operating power supply voltage supplied to the amplifying devices in accordance with an output request level to control output power. A device (diode) having temperature dependency is provided for an operating power supply voltage control circuit that controls the operating power supply voltage for the amplifying devices in accordance with the output request level. The operating power supply voltage control circuit is configured to generate the operating power supply voltage corresponding to the device's temperature characteristics and supply it to the amplifying devices.