Abstract:
In various embodiments, a read assembly for reading a dual-layered medium may be provided. The dual-layered medium may include a servo layer and a data layer over the servo layer. The read assembly may include a data read head configured to read the data layer. The read assembly may also include a servo read head configured to read the servo layer.
Abstract:
In one embodiment, a system is provided for detecting a damaged magnetoresistive sensor. The system includes a processor, and logic or software stored in hardware that is executable by the processor. The logic or software is configured to, when executed by the processor, determine a scaled resistance of a plurality of sensors. The scaled resistances are measured against at least a first bias current, Imr, or against a square of the at least a first bias current Imr, I2mr. The system also includes logic or software stored in hardware that is configured to, when executed by the processor, output a representation of the measurements.
Abstract:
A system according to one embodiment includes a magnetic head having a plurality of sensors arranged to simultaneously read at least three immediately adjacent data tracks on a magnetic medium, wherein none of the sensors share more than one lead with any other of the sensors. Such embodiment may be implemented in a magnetic data storage system such as a disk drive system, which may include a magnetic head, a drive mechanism for passing a magnetic medium (e.g., hard disk) over the magnetic head, and a controller electrically coupled to the magnetic head.
Abstract:
The embodiments disclosed generally relate to a magnetic recording head having three magnetoresistive effect elements. The structure comprises a first magnetoresistive effect element on a lower magnetic shield layer. Additionally, two lower electrodes are disposed on the two sides of the first magnetoresistive effect element. A second magnetoresistive effect element is disposed on a lower electrode while a third magnetoresistive effect element on another lower electrode. An upper magnetic shield layer is disposed between the second magnetoresistive effect element and the third magnetoresistive effect element. The upper magnetic shield also serves as an electrode of the first magnetoresistive effect element.
Abstract:
A system including transmission lines, read elements, and differential amplifiers. The read elements are connected in series. Each of the read elements is connected to a respective pair of the transmission lines. The differential amplifiers are connected respectively to the read elements via the transmission lines. The differential amplifiers are configured to amplify differential signals received from the respective pairs of the transmission lines.
Abstract:
Apparatus for two dimensional reading. In accordance with some embodiments, a magnetic read element has a bias magnet disposed between a plurality of read sensors. The bias magnet may be configured to concurrently bias each read sensor to a predetermined magnetization.
Abstract:
Circuits, systems, and methods for generating and calibrating bias for a magneto-resistive (MR) sensor. The circuit relates to a preamplifier circuit in a magnetic storage system, including an amplifier having an input coupled to a first MR sensor node, a first feedback path comprising a feedback resistor, the path configured to receive an amplifier output from the amplifier and to provide a feedback output to the first MR sensor node, a charging circuit configured to generate a current, apply the current to the first MR sensor node, and sample a voltage between the first MR sensor node and a second MR sensor node to produce a sampled voltage, the charging circuit operating when the feedback path is activated, and a bias circuit configured to apply a bias voltage across the first and second MR sensor nodes and to adjust the bias voltage to match the sampled voltage, the bias circuit operating when the feedback path is deactivated. The present invention advantageously provides for fast and accurate calibration of bias across an MR sensor that compensates for bias error introduced by the feedback path.
Abstract:
In one embodiment, a method for detecting a damaged magnetoresistive sensor includes analyzing readback signals of a plurality of sensors each being positioned over data tracks on a passing magnetic medium; determining whether at least one of the readback signals is out of phase with respect to the other readback signals, and/or whether at least one of the readback signals has a significantly lower amplitude that the other readback signals. Additional methods are also presented.
Abstract:
A system and method for determining head-disk contact (HDC) in a disk drive uses the signal from the magnetoresistive (MR) read head and does not require the presence of magnetic transitions on the disk. The method thus has application in head-disk testers or “spin stands” to facilitate the design and testing of slider-suspension assemblies and fly-height actuators, as well as in disk drives to take corrective action before HDC and/or to control fly-height actuators. The invention is also a magnetic recording disk drive that has a fly-height actuator and a low-pass filter and comparator circuit for the MR signal. When the output of the filter exceeds a threshold the comparator circuit output indicates the onset of HDC. The comparator circuit output is input to a digital processor or controller. When the controller determines the onset of HDC or that HDC has occurred, it generates a control signal that can be used to cause the disk drive to take corrective action.
Abstract:
A method is presented for fabrication of a tape medium read head having a unitary formation of multiple elements for reading multi-track data from a magnetic tape. The method includes providing a continuous substrate layer, and forming a sensor material layer on the continuous substrate layer. Photoresist material is deposited on the sensor material layer, and is patterned to form masks which provide protected areas and exposed areas of the sensor material layer. Exposed areas of the sensor material layer are shaped to form sensors from the protected areas of the sensor material layer. Electrical lead materials are deposited between and adjacent to the sensors, and the masks are removed.