Abstract:
Group firing system for firework unit, wherein it has 1-2 paper fuse tubes, which are assembled with other shot tubes. While both ends of the paper fuse tubes have male socket and female socket, so each firework unit could be connected to a firework group through soft fuse hose which contains a fuse inside. There are two firing systems, i.e. series connection and parallel connection.
Abstract:
A multiple effect pyrotechnic shell (20), having a lift chamber (22), primary break (24), secondary break (26), and a tertiary break (28) has a desired weight distribution to inhibit tumbling. The secondary break weight is less than the primary break weight, and the tertiary break weight is less than both the primary and secondary break weights. Thus, the center of gravity of the shell (20) is positioned below a midpoint of the shell height. A first timing fuse (46) extends from a lift charge (30) into a primary break charge (50A) of the primary break (24), and a primary internal timing fuse (64) extends from the primary break (24) to the secondary break (26). Further, a secondary internal timing fuse (70) extends from the secondary break (26) to the tertiary break (28). Fuse fragments (52) are preferably disbursed within the break hulls (48) to provide filler and add an additional effect to each break (24-28).
Abstract:
A plurality of magazines each receive an array of pyrotechnic devices. The magazines are latched to a fire control and support assembly which automatically engages the fire control circuit to each device of each magazine. The circuit ignites all devices of all the magazines in a given serial sequence. The system, under control of an operator, when turned off, may be restarted at the beginning of a selected sequence, at the point where the last device was ignited and continue the sequence or at selected different portions of devices. Different size devices can be ignited by one circuit using different magazines all coupled to one unit. Safety features also include delay ignition after startup and sounding an alarm before any device is ignited. A CPU is enabled by a fire command signal and disabled by internal programmed instructions. The CPU is periodically enabled in a device ignition cycle by external timing signals initiated by the CPU when enabled.
Abstract:
Located below an aircraft is a support rod (1) provided with female engagement members (10). Standard missile launcher modules are provided on their flat upper wall with counterpart male engagement members (20). The engagement members (10 and 20) cooperate in the manner of dovetails and for each module location, they are separated from each other according to the same geometric progression along the support rod (1) and the upper wall of the module (2). A device comprising a cam (27) and lever (273) makes it possible to ensure at the same time the translation necessary for locking of the dovetail, as well as the making of contact between the electrical connector members.
Abstract:
A modular pyrotechnic launch unit includes a launch module, a first module, and a second module. The launch module includes a launch barrel. The first module is coupled in series to the launch module. The first module includes a first ignition state in which the first module ignites a pyrotechnic element that will then pass through the launch barrel. The first module also includes a first pass-through state in which the first module allows a pyrotechnic element ignited by another module to pass through the first module. The second module is coupled in series to the first module. The second module includes a second ignition state in which the second module ignites a pyrotechnic element that will then pass through the first module and through the launch barrel.
Abstract:
A modular pyrotechnic launch unit includes a launch module, a first module, and a second module. The launch module includes a launch barrel. The first module is coupled in series to the launch module. The first module includes a first ignition state in which the first module ignites a pyrotechnic element that will then pass through the launch barrel. The first module also includes a first pass-through state in which the first module allows a pyrotechnic element ignited by another module to pass through the first module. The second module is coupled in series to the first module. The second module includes a second ignition state in which the second module ignites a pyrotechnic element that will then pass through the first module and through the launch barrel.