Abstract:
An engine rotational speed determining device is disclosed which includes a signal inputting means and a rotational speed determining means. The signal inputting means inputs a signal that indicates current supplied to an electric motor, which starts an internal combustion engine, during a starting operation of the engine by the motor. The rotational speed determining means determines a rotational speed of the engine in the starting operation based on a change in the current indicated by the signal input by the signal inputting means.
Abstract:
A method and an apparatus for protecting an engine starter of a motor vehicle against overheating with enhanced reliability by controlling turn-on/off of the starter in dependence on a conducting current of the starter, a starter temperature and an ambient temperature. The apparatus includes a voltage detecting system (1) for measuring a supply voltage (Vs) of the engine starter, a voltage waveform information detecting system (11) for detecting at least one of frequency information and amplitude information of a waveform representing variation of the supply voltage (Vs) as voltage waveform information (T), an a conduction time control system (12, 12A) for controlling a conduction time period of the engine starter in accordance with the voltage waveform information (T).
Abstract:
The invention relates to an electric starter for an internal combustion engine, having a thermal monitoring protector (4) for turning the starter (1) off when its limit operating temperature is reached. The starter is characterized by a device (5) for ascertaining a virtual operating temperature (TV); the device (5) ascertains the virtual operating temperature (TV) as a function of at least one operating parameter that affects the operating temperature of the starter (1).
Abstract:
A starting motor for an internal combustion engine, where a control circuit monitors or controls the temperature of the starting motor or the carbon brushes, and if necessary, limits or switches off the primary current. The temperature is indirectly determined by means of a comparison, using the voltage ripple in the primary circuit between the battery and the starting motor. Occurring errors can be stored as status messages in an error storage device, and if desired, they can be interrogated and corrected at the next service interval.
Abstract:
A starter device (1) for an internal combustion engine (2) is provided that comprises an electric starter motor (3), a power supply (16), and an activating unit (4) for the starter motor (3). The activating unit comprises circuit-breaker electronics (6) and a control unit (5) for the circuit-breaker electronics (6). Sensors are provided to register physical parameters relevant to the starting power of the starter motor (3) in order to adapt the start characteristic line of the starter motor (3) in optimal fashion within permissible limit values of the physical parameters.
Abstract:
The method according to the invention is implemented in an alternator-starter (1) comprising phase windings (u,v,w) connected to an inverter (3) linked to an onboard electrical network (2) powered by a battery for operation as a starter. The invention involves controlling the inverter in a chopped full-wave control mode when the rotational speed (Ω) of the alternator-starter is lower than at least a threshold speed and in a full-wave control mode when the rotational speed is higher than the threshold speed. According to a specific embodiment, the switching between the chopped full-wave control mode and the full-wave control mode takes place according to a hysteresis cycle using two predefined threshold speeds.
Abstract:
The method according to the invention is implemented in an alternator-starter (1) comprising phase windings (u,v,w) connected to an inverter (3) linked to an onboard electrical network (2) powered by a battery for operation as a starter. The invention involves controlling the inverter in a chopped full-wave control mode when the rotational speed (Q) of the alternator-starter is lower than at least a threshold speed and in a full-wave control mode when the rotational speed is higher than the threshold speed. According to a specific embodiment, the switching between the chopped full-wave control mode and the full-wave control mode takes place according to a hysteresis cycle using two predefined threshold speeds.
Abstract:
A system and method for controlling engine idle stop in a hybrid vehicle that uses predictive information to schedule engine stops with relatively longer stop duration time to gain more fuel savings and extend life of starter motor. More specifically, predictive information may be used to determine potential vehicle stop events, along with corresponding stop duration times, within a time window. An engine stop scheduler and/or controller may be configured to schedule stops of longer duration for optimal total engine stop time. Similarly, taking into account constraints imposed by the thermal limits of the motor, engine stop may be inhibited for predicted short events to allow engine stop at later longer stop events.
Abstract:
Disclosed is an idle stop control device that automatically shuts down an engine when a first condition is satisfied, and then restarts the engine using a starter to which electricity is fed through a brush when a second condition is satisfied, the idle stop control device including a start-operation brush wear amount computing unit that is configured to compute a brush wear amount in a single start operation, a total brush wear amount computing unit that is configured to compute a total brush wear amount by integrating the brush wear amount in a single start operation, and an automatic engine shutdown prohibiting unit that is configured to prohibit an automatic engine shutdown when the total brush wear amount is equal to or larger than a warranty driving wear amount of the starter.
Abstract:
Methods, systems, and vehicles are provided pertaining to the determination of a temperature of a vehicle motor having an ignition when the ignition is turned on following a period of time in which the ignition had been turned off. A memory stores a function having a boundary condition that comprises a prior temperature from when the ignition was turned off. A processor is coupled to the memory. The processor is configured to determine an amount of time for which the ignition has been turned on and determine the temperature of the motor using the function if the amount of time for which the ignition has been turned on is less than a predetermined threshold.