摘要:
An isolated protein comprises respective amino acid sequences of each of a plurality of CTL epitopes from two or more different herpesvirus antigens and further comprises an intervening amino acid or amino acid sequence between at least two of said CTL epitopes comprising proteasome liberation amino acids or amino acid sequences and, optionally, Transporter Associated with Antigen Processing recognition motifs. The isolated protein is capable of rapidly expanding human cytotoxic T lymphocytes (CTL) in vitro and eliciting a CTL immune response in vivo upon administration to an animal as an exogenous protein. Typically, the isolated protein comprises no more than twenty (20) CTL epitopes derived from cytomegalovirus and/or Epstein-Barr virus antigens.
摘要:
Modular nanoparticle vaccine compositions and methods of making and using the same have been developed. Modular nanoparticle vaccine compositions comprise an antigen encapsulated in a polymeric particle and adaptor elements which modularly couple functional elements to the particle. The modular design of these vaccine compositions, which involves flexible addition and subtraction of antigen, adjuvant, immune potentiators, molecular recognition and transport mediation elements, as well as intracellular uptake mediators, allows for exquisite control over variables that are important in optimizing an effective vaccine delivery system.
摘要:
The present invention relates to an Epstein-Barr virus-like particle (EB-VLP) substantially free of Epstein-Barr Virus (EBV) DNA. The present invention also relates to a polynucleotide comprising an EBV genome a) lacking at least one expressible gene selected from the group consisting of the BFLF1 gene, the BBRF gene, the BGRF1 gene, the BDRF1 gene, the BALF3 gene, the BFRF1A gene, and the BFRF1 gene, and b) producing the EB-VLP of the invention in a suitable host cell. The present invention further relates to a vector and a host cell comprising the polynucleotide of the invention as well to a method of manufacturing said EB-VLPs, a method of manufacturing a vaccine thereof, a vaccine and a composition comprising said EB-VLPs.
摘要:
The present invention relates to a vaccine comprising a particle, said particle comprising (i) at least one Epstein-Barr virus (EBV) structural polypeptide, (ii) at least one EBV lytic polypeptide, (iii) membrane lipids, said particle being devoid of EBV DNA, wherein (a) the B-cell transformation capacity of one or more EBV polypeptides required for B-cell transformation as comprised in said particle is disabled while their immunogenicity is maintained; and/or (b) said particle is devoid of one or more EBV polypeptides required for B-cell transformation. Furthermore, the invention relates to a method for generating a particle, to a cell obtained in the method of the invention, a kit comprising the vaccine or the particle generated according to the method of the invention. Also, the invention relates to the use of the vaccine or the particle generated according to the method of the invention for generating CD8+ cells specific for an EBV antigen.
摘要:
The present invention provides methods for eliciting an effective immune response against a weakly immunogenic disease or for priming T cells to become memory T cells against a weakly immunogenic disease by directly vaccinating into the bone marrow of the patient an antigen associated with the weakly immunogenic disease. Also included in the present invention is an isolated population of human memory CD8+ T cells from the bone marrow which is in a heightened activation state with a unique effector phenotype.
摘要:
Compositions comprising gp350 variant DNA and amino acid sequences are provided, as are vectors and host cells containing such sequences. Also provided is a process for producing homogeneous gp350 protein recombinantly and in the absence of production of gp220 protein, pharmaceutical compositions containing such protein and prophylactic treatments making use of such proteins.
摘要:
Compositions that bind specific viral proteins expressed during the latent stage of the viral life cycle are disclosed. These compositions bind the latent viral proteins while the viral proteins are expressed in their cellular host, and provide a means for targeting cells that harbor latent virus. In a preferred embodiment the compositions are antibodies which bind the extracellular region of the latent viral protein, most preferably LMP-2A, an EBV latent protein, conjugated to a diagnostic or cytotoxic agent or immobilized to a solid support for infected cell removal. These antibodies can distinguish cells expressing EBV DNA from cells which do not. Compositions that can be used to elicit production of these antibodies, or as a vaccine, are also disclosed. Methods for generating diagnostic or cytotoxic reagents and vaccines based on the viral epitopes that identify cells harboring latent virus are also discloset. The antibody conjugates can be used in diagnostic assays to identify cells expressing latent viral protein and people harboring latent viral particles. The antibody conjugates can also be used to remove infected cells or kill the infected cells. Alternatively, or in addition, the viral proteins or portions thereof can be used as a vaccine to induce an immune reaction by the host to kill the infected cells. These methods can be used to detect or treat patients harboring latent viruses like EBV and who risk developing autoimmune diseases such as systemic lupus erythematosus (SLE) or rheumatoid arthritis (RA).
摘要:
A vaccine is disclosed for the prophylaxis against pathogenic development of atherosclerotic plaque in a mammalian subject susceptible thereto which consists essentially of a multiplicity of killed whole-virus strains, selected from the group consisting of: Herpes Simplex Virus 1; Herpes Simplex Virus 2; Herpes Simplex Virus 6; Human Cytomegalovirus; and Epstein-Barr Virus; in combination with a pharmaceutically acceptable inert vaccine carrier or diluent.
摘要:
Improved mammalian virus vaccines are combinations that contain an immunogenic amount of inactivated virus, such as influenza virus, Herpes varicella virus, measles virus, Epstein Barr virus, respiratory syncytial virus, parainfluenza 3, Herpes simplex type 1 virus, and Herpes simplex type 2 virus, and an immunogenic amount of a purified recombinant envelope protein from the virus, or a fragment or precursor of the protein. Alternatively, they contain either inactivated virus and/or envelope protein antigens and an adjuvant such as granulocyte-microphage colony stimulating factor. One embodiment of an influenza vaccine is prepared by combining inactivated virus, preferably three strains of the virus, and hemagglutinin, preferably a combination of respective hemagglutinins for each of the three strains present. In another embodiment, an influenza vaccine is prepared by combining inactivated virus, again preferably three strains of the virus, and neuraminidase, preferably a combination of respective neuraminidase for each of the three strains present. In a third embodiment, the vaccine contains inactivated virus and both hemagglutinin and neuraminidase, preferably using three strains of each. Granulocyte-macrophage colony stimulating factor is, optionally, added to these embodiments.
摘要:
Antigens, immunogens, inocula, antibodies, and particularly diagnostic methods and systems relating to Epstein-Barr virus nuclear antigen (EBNA) are disclosed. The diagnostic methods and systems utilize a synthetic, random copolymer polypeptide containing about 6 to about 40 amino acid residues having a sequence corresponding to the sequence of a CMV-encoded polypeptide antigen. The diagnostic methods and systems are particularly useful in identifying infections mononucleosis during its acute phase.