Abstract:
The invention relates to a device for producing a metallic product (1) by rolling, comprising: a first area (2) inside of which slabs are produced by primary shaping; a second area (3), which is located downstream from the first area (2) in the direction of flow (F) of the material and inside of which at least one first rolling device (4) for rolling slabs is arranged; a third area (5), which is located downstream from the second area (3) in the direction of flow (F) of the material and inside of which at least one second rolling device (6) for rolling slabs or the intermediate product produced therefrom is arranged, and; a fourth area (7), which is located downstream from the third area (5) in the direction of flow (F) of the material and inside of which at least one aftertreating device (8) for the rolled material is arranged In order to increase the economic efficiency of the device, this device is characterized by (having a conveying device (9) with which the metallic product (1) can be removed between the second area (3) and the third area (5) conveyed and can be fed to the processing process once again between the third area (5) and the fourth area (7).
Abstract:
Between an intermediate roll unit and a dimensioning finishing roll unit of a continuous light-section or wire rod rolling train, a multifunctional section is provided with three parallel lines and at least the first and second rolling lines having rolling blocks and substantially all of the lines including cooling sections and/or temperature equalization sections. Via distributing guides and 180° loop forming path segments, the workpieces are selectively directable from the first line to the dimensioning finishing rolling unit without traveling over the second and third lines and to the dimensioning finishing rolling unit after travelling over all or part of the second and third lines.
Abstract:
Apparatus for the rolling and heat treatment of elongated metal product of relatively small cross section, such as rods and bars, is described in which the elements required for the conduct of a variety of heat treatments are arranged in in-line disposition whereby any of several heat treatment procedures can be performed on the product without need for transferring the product to remotely located heat treatment facilities. The methods of performing various heat treatments through use of the disclosed apparatus are also described.
Abstract:
A continuous light-section or wire train includes finishing and sizing mill units arranged following the intermediate rolling section of the train, cooling sections and temperature equalization sections arranged in front of, between and following the finishing and sizing mill units, and rolling stock collecting devices arranged following the cooling sections and temperature equalization sections. The finishing mill unit includes two independent finishing mill units, wherein one finishing mill unit is arranged in a first rolling line which branches off from a second rolling line through a distributing guide arranged following the intermediate rolling section, followed by a temperature equalization section with cooling section extending past the finishing mill unit, another looper and another distributing guide following the looper leading into the second rolling line in front of the finishing mill unit, and wherein the other finishing mill unit is arranged together with a sizing mill unit in the second rolling line which extends parallel to the first rolling line.
Abstract:
Long products are hot rolled and sized by being subjected to progressively diminishing area reductions in a succession of at least three mechanically interconnected two roll passes driven by a common mill drive. The area reductions are achieved by imparting a first cross sectional configuration to the products rolled in the first roll pass, and by imparting a different second cross sectional configuration to the products being rolled in each of the second and third roll passes. A wide range of product sizes is accommodated by selectively adjusting the speeds at which each of the roll passes is driven by the common mill drive in order to vary the drive speed ratios between successive roll passes.
Abstract:
A hot strip mill having a final reducing stand and runout cooling means downstream of the reducing stand includes an incubator capable of coiling and decoiling the hot strip. The incubator is located intermediate the runout cooling means. In a preferred form the final reducing stand is a hot reversing mill. A second incubator and/or a temper mill and/or a slitter may be positioned downstream of the first incubator. The method of rolling includes isothermally treating the strip within a predetermined time and temperature range in the incubator prior to subsequent processing. The subsequent processing may include any one or more of the following: further deformation by cold rolling, temper rolling or cooling at a desired heat loss rate.
Abstract:
A system for the thermomechanical rolling of long semi-finished steel products includes a first rolling unit; a second rolling unit, arranged downstream of the first rolling unit; a first thermomechanical sizing block, arranged downstream of the second rolling unit; a second cooling device, arranged between the second rolling unit and the first thermomechanical sizing block; a cooling-bed, ring-laying and/or coil-winding device, arranged downstream of the first thermomechanical sizing block; a third cooling device, arranged between the first thermomechanical sizing block and the cooling-bed, ring-laying and/or coil-winding device; and a structure-sensor device, which is arranged between the first thermomechanical sizing block and the cooling-bed, ring-laying and/or coil-winding device, and can be used for determining directly in the ongoing process a martensitic structure, in particular a proportion of martensite in percent by area, in the thermomechanically rolled long semi-finished steel product or in the steel product.
Abstract:
A method for producing a metal strip, in which the strip is rolled in a multi-stand rolling mill, is removed behind the final rolling stand of the rolling mill in the direction of conveyance, and is cooled in a cooling device. The strip or metal sheet is subjected to additional rapid cooling immediately after passing the working rollers of the final rolling stand, wherein the strip or the metal sheet is cooled at least partially within the extent of the final rolling stand in the direction of conveyance, wherein rapid cooling is performed by applying a coolant to the strip or metal sheet from above and from below, wherein the volume flow of coolant that is applied to the strip or metal sheet from below measures at least 120% of the volume flow of coolant that is applied to the strip or metal sheet from above.
Abstract:
A flat rolling stock is first rolled in a rolling mill from an initial thickness to an intermediate thickness, and then from the intermediate thickness to a final thickness. In order to roll the rolling stock from the initial thickness to the intermediate thickness, a number of reduction stages is determined and the rolling stock is rolled accordingly. Further, a permissible thickness range for the intermediate thickness is set using technological boundary conditions. The reduction stages are determined such that the intermediate thickness is within the permissible thickness range and either the performance limits of the rolling mill are completely utilized in every reduction stage, or not completely utilized in at least one reduction stage; however, in the event that the number of reduction stages were reduced by one, the intermediate thickness would be outside of the permissible thickness range, although the performance limits of the rolling mill would be completely utilized for all reduction stages.
Abstract:
The invention relates to a method for hot-rolling a slab (1), especially a steel slab, the slab (1) being subjected to at least two shaping steps at different temperatures in a hot-rolling mill (2), the slab (1) being cooled between two such shaping steps. In order to prevent ferrite from forming too soon during the hot-rolling, the slab (1) is cooled such that the lateral end sections (3, 4) of the slab (1) are cooled with a lower cooling efficiency than a center section (5) of the slab (1). The invention further relates to a hot-rolling mill (2) for hot-rolling a slab.