Abstract:
An apparatus and method for processing elongated sheet material through a plurality of processing stations including a cooling station for lowering the temperature of the sheet material. The cooling station includes a plurality of individually controllable cooling zones each for controlling a portion of the transverse width of the sheet material during passage through the cooling zone. The cooling zones each include a plurality of cooling fluid directing spray nozzles and a sensor for sensing the temperature of the portion of the sheet material onto which cooling fluid has been directed by the respective cooling zone. A controller responsive to the temperature sensed at each cooling zone is operable for independently controlling the flow of cooling fluid to the fluid spray nozzles of each cooling zone based upon a preset temperature setting of the controller.
Abstract:
A deposition apparatus comprising one or more atomizers structurally integrated with a deposition head. The entire head may be replaceable, and prefilled with material. The deposition head may comprise multiple nozzles. Also an apparatus for three dimensional materials deposition comprising a tiltable deposition head attached to a non-tiltable atomizer. Also methods and apparatuses for depositing different materials either simultaneously or sequentially.
Abstract:
Equipment for the atomisation of a liquid stream by means of a dispersing gaseous stream and for mixing the atomised product with a further suitable gaseous stream, characterized in that it comprises: a feeding zone (A) equipped with means suitable for feeding the liquid stream, the gaseous dispersing stream and further gaseous stream; one or more two-stage atomisation zones (N) of the liquid stream by means of the gaseous dispersing stream; a distribution zone (D) of the further gaseous stream; the first stage of the atomisation zone (N1) essentially consisting of a tubular core (2), through which the liquid stream passes, equipped with an appropriate series of nozzles (5), situated at the same height, and an outer jacket (4) coaxial to said core, through which the gaseous dispersing stream passes, wherein said nozzles (5) allow the gaseous dispersing stream to enter the tubular core, perpendicularly to the axis of said tubular core (2), effecting a first atomisation of the liquid stream, the second stage of the atomisation zone (N2) essentially consisting of one or more nozzles (6) positioned at the end of the tubular core (2), parallel to the axis of said tubular core, to increase the atomisation degree, the distribution zone (D) essentially consisting of a further jacket (8), through which the further gaseous stream passes, external and coaxial to the jacket (4) of the first atomisation stage, and a series of nozzles (9) situated at the bottom of said further jacket, all positioned at the same height and parallel or inclined with an alpha angle lower than 40° with respect to the axis of the tubular core.
Abstract:
The invention relates to a device and method for the atomisation or nebulisation of a liquid using a propellant vapour or gas (referred to hereafter as gas) which is introduced into the device under pressure. According to the invention, the two fluids are mixed together and subsequently released to the exterior, such that the liquid is released in the form of an aerosol or a suspension of drops that is conveyed by the gas stream. The inventive device comprises a liquid storage chamber which is housed in a pressurised cylinder or container and a liquid/gas mixing area whereat the aforementioned two phases are combined and released to the exterior.
Abstract:
A multi-function spray nozzle for engine applications useful as a cooling device to introduce a fluid into the fluid stream of the engine, and as a cleaning device to introduce a fluid to clean internal components of the engine. The nozzle includes a multi-layered arrangement of etched plates defining flow paths for the first and second fluids. Non-radial feed slots direct the first fluid into a cylindrical swirl chamber. The swirling fluid exits the swirl chamber through a spray orifice or a prefilmer, depending on whether the nozzle is configured as a simplex or prefilmer nozzle. Other non-radial feed slots direct the second fluid inward, downstream of the first fluid, to create a fine dispersion of droplets for fluid stream cooling purposes. During cleaning, only the first fluid is introduced through the nozzle, which results in a larger droplet size suitable for cleaning purposes of the internal components of the engine.
Abstract:
An improved air-assisted spray nozzle assembly includes a section for receiving liquid and gas streams and a spray tip located downstream therefrom. The spray tip has a downstream chamber for receiving the liquid and gas with passages, each terminating with a cavity. The cavity cooperates with complementary notched portions for directing discharging flow streams in a predetermined direction for defining a well defined conical or flat spray pattern.
Abstract:
An air assisted atomizing spray nozzle including an atomizing member having: (a) a mixing chamber, (b) a liquid inlet opening for injecting a liquid stream axially into the mixing chamber, (c) a pair of air inlet openings for injecting a pair of air streams radially into the mixing chamber in directions substantially opposed to one another and substantially perpendicular to the liquid stream for atomizing the liquid stream, and (d) an exit orifice in axial communication with the mixing chamber for discharging atomized liquid therefrom. The atomized liquid is sprayed into atmosphere by a spray tip. The atomizing member and the spray tip are held in assembled relation with a housing by a quick connect/quick release cap.
Abstract:
An actuator for a liquid spray pump is provided with a skirt which co-operates with a body of the pump to compress a volume of air during pump actuation. Air compressed by this action is ejected from an air injection channel in the vicinity of a liquid spray emerging from a first nozzle defined by the actuator. A second nozzle is connected to the actuator externally of the first nozzle to define an air gap therebetween and the air ejection channel communicates with the air gap such that in use both the liquid spray and the compressed air are dispensed through the second nozzle aperture. Primarily intended for dispensing water based products, the effect of the compressed air is to assist in the evaporation of water contained in the liquid or any other volatile liquid dissolved in a liquid product to be dispensed in aerosol form.
Abstract:
A nozzle for atomizing large volumes of liquid fuel with steam, air or other conventional fluids. Liquid fuel is introduced into the inner body wherein the atomizing medium is admixed through apertures to lower the density of the fuel and effect a spiraling flow through the inner body. The fuel leaves the inner body through a single exit having a flow area not smaller than onehalf the flow area of the main fuel supply conduit where an atomizing medium impinges onto and into the exiting stream to externally atomize the fuel and form a flow pattern that is essentially in the shape of a solid cone. This nozzle provides a solution to fouling problems normally encountered with both commercial grades of liquid fuels and combustible liquid process by-products. The nozzle has performed well with liquid fuels containing suspended solids up to one half inch in diameter and at rates up to 300 gph.
Abstract:
A nozzle for mixing a stream of pressurized viscous material, such as cold liquid asphalt, with pressurized air and thereby discharging the viscous liquid material in a fine spray for coating a surface such as the roof of a building.