Abstract:
A device for processing a biological material is disclosed. The device includes a syringe barrel comprising beads, a filter positioned at a close end of the barrel, a plunger insertable into the barrel through an open end, and a needle. The plunger includes a paddle assembly that is configured to mix a biological material with the beads after the biological material has been harvested from a patient.
Abstract:
A method for obtaining MNCs is set forth. The method includes: separating mononuclear cells from a biological fluid that includes red blood cells, plasma and platelets and collecting a targeted number of mononuclear cells in a suspension including plasma and residual red blood cells and platelets; concentrating the separated mononuclear cells; removing plasma from the concentrated mononuclear cells until the amount of residual plasma remaining with the concentrated mononuclear cells reaches a pre-determined volume; and adding a crystalloid solution to the concentrated mononuclear cells. Related apparatus and resultant MNC products are also disclosed.
Abstract:
A method provided for determining a range for the amount of light-energy attenuating material that may be present in a suspension containing target cells (such as MNCs), light-energy attenuating matter (such as RBCs and plasma), and a light-energy activatable compound (such as psoralen) so that a desired therapeutic effect (such as the percentage of MNCs in which apoptosis occurs) is obtained when the suspension is subjected to a known amount of light energy. In a related aspect, a method is provided for preparing a suspension containing target cells, light-energy attenuating matter, and a light-energy activatable compound so that a desired therapeutic effect is obtained when the suspension is subjected to a known amount of light energy