-
公开(公告)号:US20220366145A1
公开(公告)日:2022-11-17
申请号:US17468950
申请日:2021-09-08
Applicant: salesforce.com, inc.
Inventor: Ehsan Hosseini-Asl , Wenhao Liu
IPC: G06F40/30 , G06N3/08 , G06N3/04 , G06F40/284
Abstract: Sentiment analysis is a task in natural language processing. The embodiments are directed to using a generative language model to extract an aspect term, aspect category and their corresponding polarities. The generative language model may be trained as a single, joint, and multi-task model. The single-task generative language model determines a term polarity from the aspect term in the sentence or a category polarity from an aspect category in the sentence. The joint-task generative language model determines both the aspect term and the term polarity or the aspect category and the category polarity. The multi-task generative language model determines the aspect term, term polarity, aspect category and category polarity of the sentence.
-
公开(公告)号:US11481636B2
公开(公告)日:2022-10-25
申请号:US16877325
申请日:2020-05-18
Applicant: salesforce.com, inc.
Inventor: Govardana Sachithanandam Ramachandran , Ka Chun Au , Shashank Harinath , Wenhao Liu , Alexis Roos , Caiming Xiong
Abstract: An embodiment provided herein preprocesses the input samples to the classification neural network, e.g., by adding Gaussian noise to word/sentence representations to make the function of the neural network satisfy Lipschitz property such that a small change in the input does not cause much change to the output if the input sample is in-distribution. Method to induce properties in the feature representation of neural network such that for out-of-distribution examples the feature representation magnitude is either close to zero or the feature representation is orthogonal to all class representations. Method to generate examples that are structurally similar to in-domain and semantically out-of domain for use in out-of-domain classification training. Method to prune feature representation dimension to mitigate long tail error of unused dimension in out-of-domain classification. Using these techniques, the accuracy of both in-domain and out-of-distribution identification can be improved.
-
13.
公开(公告)号:US20210374353A1
公开(公告)日:2021-12-02
申请号:US17005316
申请日:2020-08-28
Applicant: salesforce.com, inc.
Inventor: Jianguo Zhang , Kazuma Hashimoto , Chien-Sheng Wu , Wenhao Liu , Richard Socher , Caiming Xiong
Abstract: An online system allows user interactions using natural language expressions. The online system uses a machine learning based model to infer an intent represented by a user expression. The machine learning based model takes as input a user expression and an example expression to compute a score indicating whether the user expression matches the example expression. Based on the scores, the intent inference module determines a most applicable intent for the expression. The online system determines a confidence threshold such that user expressions indicating a high confidence are assigned the most applicable intent and user expressions indicating a low confidence are assigned an out-of-scope intent. The online system encodes the example expressions using the machine learning based model. The online system may compare an encoded user expression with encoded example expressions to identify a subset of example expressions used to determine the most applicable intent.
-
公开(公告)号:US20210150365A1
公开(公告)日:2021-05-20
申请号:US16877325
申请日:2020-05-18
Applicant: salesforce.com, inc.
Inventor: Govardana Sachithanandam Ramachandran , Ka Chun Au , Shashank Harinath , Wenhao Liu , Alexis Roos , Caiming Xiong
Abstract: An embodiment provided herein preprocesses the input samples to the classification neural network, e.g., by adding Gaussian noise to word/sentence representations to make the function of the neural network satisfy Lipschitz property such that a small change in the input does not cause much change to the output if the input sample is in-distribution. Method to induce properties in the feature representation of neural network such that for out-of-distribution examples the feature representation magnitude is either close to zero or the feature representation is orthogonal to all class representations. Method to generate examples that are structurally similar to in-domain and semantically out-of domain for use in out-of-domain classification training. Method to prune feature representation dimension to mitigate long tail error of unused dimension in out-of-domain classification. Using these techniques, the accuracy of both in-domain and out-of-distribution identification can be improved.
-
公开(公告)号:US12072955B2
公开(公告)日:2024-08-27
申请号:US17532851
申请日:2021-11-22
Applicant: salesforce.com, inc.
Inventor: Chen Xing , Wenhao Liu , Chu Hong Hoi , Nitish Shirish Keskar , Caiming Xiong
IPC: G06F18/214 , G06F18/21 , G06F40/00
CPC classification number: G06F18/2148 , G06F18/2163 , G06F40/00
Abstract: Embodiments are directed to pre-training a transformer model using more parameters for sophisticated patterns (PSP++). The transformer model is divided into a held-out model and a main model. A forward pass and a backward pass are performed on the held-out model, where the forward pass determines self-attention hidden states of the held-out model and the backward pass determines loss of the held-out model. A forward pass on the main model is performed to determine a self-attention hidden states of the main model. The self-attention hidden states of the main model are concatenated with the self-attention hidden states of the held-out model. A backward pass is performed on the main model to determine a loss of the main model. The parameters of the held-out model are updated to reflect the loss of the held-out model and parameters of the main model are updated to reflect the loss of the main model.
-
公开(公告)号:US11853706B2
公开(公告)日:2023-12-26
申请号:US17468950
申请日:2021-09-08
Applicant: salesforce.com, inc.
Inventor: Ehsan Hosseini-Asl , Wenhao Liu
IPC: G06F40/30 , G06F40/284 , G06N3/04 , G06N3/08
CPC classification number: G06F40/30 , G06F40/284 , G06N3/04 , G06N3/08
Abstract: Sentiment analysis is a task in natural language processing. The embodiments are directed to using a generative language model to extract an aspect term, aspect category and their corresponding polarities. The generative language model may be trained as a single, joint, and multi-task model. The single-task generative language model determines a term polarity from the aspect term in the sentence or a category polarity from an aspect category in the sentence. The joint-task generative language model determines both the aspect term and the term polarity or the aspect category and the category polarity. The multi-task generative language model determines the aspect term, term polarity, aspect category and category polarity of the sentence.
-
公开(公告)号:US11537899B2
公开(公告)日:2022-12-27
申请号:US16877333
申请日:2020-05-18
Applicant: salesforce.com, inc.
Inventor: Govardana Sachithanandam Ramachandran , Ka Chun Au , Shashank Harinath , Wenhao Liu , Alexis Roos , Caiming Xiong
Abstract: An embodiment proposed herein uses sparsification techniques to train the neural network with a high feature dimension that may yield desirable in-domain detection accuracy but may prune away dimensions in the output that are less important. Specifically, a sparsification vector is generated based on Gaussian distribution (or other probabilistic distribution) and is used to multiply with the higher dimension output to reduce the number of feature dimensions. The pruned output may be then used for the neural network to learn the sparsification vector. In this way, out-of-distribution detection accuracy can be improved.
-
公开(公告)号:US20220391640A1
公开(公告)日:2022-12-08
申请号:US17532851
申请日:2021-11-22
Applicant: salesforce.com, inc.
Inventor: Chen Xing , Wenhao Liu , Chu Hong Hoi , Nitish Shirish Keskar , Caiming Xiong
Abstract: Embodiments are directed to pre-training a transformer model using more parameters for sophisticated patterns (PSP++). The transformer model is divided into a held-out model and a main model. A forward pass and a backward pass are performed on the held-out model, where the forward pass determines self-attention hidden states of the held-out model and the backward pass determines loss of the held-out model. A forward pass on the main model is performed to determine a self-attention hidden states of the main model. The self-attention hidden states of the main model are concatenated with the self-attention hidden states of the held-out model. A backward pass is performed on the main model to determine a loss of the main model. The parameters of the held-out model are updated to reflect the loss of the held-out model and parameters of the main model are updated to reflect the loss of the main model.
-
公开(公告)号:US20220366893A1
公开(公告)日:2022-11-17
申请号:US17534008
申请日:2021-11-23
Applicant: Salesforce.com, inc.
Inventor: Jin Qu , Wenhao Liu , Kazuma Hashimoto , Caiming Xiong
Abstract: Some embodiments of the current disclosure disclose methods and systems for training for training a natural language processing intent classification model to perform few-shot classification tasks. In some embodiments, a pair of an utterance and a first semantic label labeling the utterance may be generated and a neural network that is configured to perform natural language inference tasks may be utilized to determine the existence of an entailment relationship between the utterance and the semantic label. The semantic label may be predicted as the intent class of the utterance based on the entailment relationship and the pair may be used to train the natural language processing intent classification model to perform few-shot classification tasks.
-
公开(公告)号:US11050700B2
公开(公告)日:2021-06-29
申请号:US15803720
申请日:2017-11-03
Applicant: salesforce.com, inc.
Inventor: William Christopher Fama Roller , Shardul Vikram , Alex Michael Noe , Noah William Burbank , Sammy Adnan Nammari , Ascander Dost , Shuvajit Das , Oliver Qian Tang , Robert Christopher Ames , Madhav Vaidyanathan , Wing Hing Ku , Bhaskar Garg , Xu Yang , Madeleine Mary Gill , Percy Dara Mehta , Janelle Wen Hui Teng , Abraham Dio Suharli , Alexis Roos , Wenhao Liu , Nelson Esteban Acevedo , Joseph Gerald Keller , Rohit Deshpande , Sandeep Raju Prabhakar
IPC: H04L12/58 , G06N3/04 , G06N3/08 , G06Q10/10 , G06F40/30 , G06F40/40 , G06F40/56 , G06F40/186 , G06F40/216 , G06F40/295
Abstract: Methods, systems, and devices for analyzing communication messages (e.g., emails) and selecting corresponding actions are described. In some database systems, a user may receive multiple messages at a user device. To efficiently determine responses to these messages, the user device may send the messages to a backend server for analysis. The server may perform natural language processing (NLP) to classify the message with one or more binary classifications and may extract metadata from each message. Based on the classifications and the metadata, the server may determine one or more actions the user device may perform to respond to each message. The server may send instructions to the user device indicating the suggested actions, and the user device may display these actions as options to a user. Additionally, the user device may use the classifications and metadata to automatically generate one or more communication templates in response to the message.
-
-
-
-
-
-
-
-
-