Efficient determination of user intent for natural language expressions based on machine learning

    公开(公告)号:US11544470B2

    公开(公告)日:2023-01-03

    申请号:US17005316

    申请日:2020-08-28

    Abstract: An online system allows user interactions using natural language expressions. The online system uses a machine learning based model to infer an intent represented by a user expression. The machine learning based model takes as input a user expression and an example expression to compute a score indicating whether the user expression matches the example expression. Based on the scores, the intent inference module determines a most applicable intent for the expression. The online system determines a confidence threshold such that user expressions indicating a high confidence are assigned the most applicable intent and user expressions indicating a low confidence are assigned an out-of-scope intent. The online system encodes the example expressions using the machine learning based model. The online system may compare an encoded user expression with encoded example expressions to identify a subset of example expressions used to determine the most applicable intent.

    EFFICIENT DETERMINATION OF USER INTENT FOR NATURAL LANGUAGE EXPRESSIONS BASED ON MACHINE LEARNING

    公开(公告)号:US20210374353A1

    公开(公告)日:2021-12-02

    申请号:US17005316

    申请日:2020-08-28

    Abstract: An online system allows user interactions using natural language expressions. The online system uses a machine learning based model to infer an intent represented by a user expression. The machine learning based model takes as input a user expression and an example expression to compute a score indicating whether the user expression matches the example expression. Based on the scores, the intent inference module determines a most applicable intent for the expression. The online system determines a confidence threshold such that user expressions indicating a high confidence are assigned the most applicable intent and user expressions indicating a low confidence are assigned an out-of-scope intent. The online system encodes the example expressions using the machine learning based model. The online system may compare an encoded user expression with encoded example expressions to identify a subset of example expressions used to determine the most applicable intent.

Patent Agency Ranking