Abstract:
A scan driving circuit is provided. The scan driving circuit for driving cascaded scan lines includes a scan driving circuit, a latch module, a driving-signal generation module, an output control module, a high gate voltage source, and a low level gate voltage. The scan driving circuit of the present invention conducts a driving operation for the latch module by a first cascade signal and a second cascade signal, so that a clock signal is not required to be processed with a phase inversion, and thereby the scan driving circuit has less overall power consumption.
Abstract:
A scan driving circuit is disclosed for executing a driving operation for cascaded scan lines and includes a pull-down control module, a pull-down module, a reset control module, a reset module, a down-stream module, a first bootstrap capacitor, a constant low-level voltage source utilized, and a constant high-level voltage source. The whole structure of the disclosed scan driving circuit is simple, and power consumption is low.
Abstract:
A thin film transistor array substrate and a touch display panel are provided, including a plurality of touch electrodes. The touch electrodes include a first touch electrode, a second touch electrode, and a third touch electrode arranged along a first direction. A number of the touch traces electrically connected between the second touch electrode and the first common power line is greater than or equal to a number of the touch traces electrically connected between the first touch electrode and the first common power line, and is less than a number of the touch traces electrically connected between the third touch electrode and the first common power line.
Abstract:
The present application provides a thin film transistor array substrate and a touch display panel including a plurality of touch electrodes, and the touch electrodes including a first touch electrode, a second touch electrode, and a third touch electrode arranged in a first direction. A number of touch trace electrically connected to the second touch electrode and the driver chip is greater than or equal to a number of touch trace electrically connected to the first touch electrode and the driver chip, and is less than a number of touch trace electrically connected to the third touch electrode and the driver chip.
Abstract:
According to a drive method for the display panel, m multiplex signals sequentially generate the high level pulse at the beginning of the (2i−1)th row period in a predetermined order. The high level pulse of the multiplex signal that is the last one to generate the high level pulse in the (2i−1)th row period continues until the end of the (2i−1)th row period. The m multiplex signals sequentially generate the high level pulse at the beginning of the (2i)th row period in a reverse order to the predetermined order. The high level pulse of the multiplex signal that is the last one to generate the high level pulse in the (2i)th row period continues until the end of the 2i row period. As a result, the number of times that the levels of the multiplex signals are changed in a frame period can be decreased to reduce the power consumption.
Abstract:
A drive method for a display panel is provided. A first multiplex signal, a second multiplex signal, a third multiplex signal, a fourth multiplex signal, a fifth multiplex signal, and a sixth multiplex signal sequentially generate the high level pulse in the predetermined order in each of the first row periods of the (2i−1)th multiplex period. In addition, the first multiplex signal, the second multiplex signal, the third multiplex signal, the fourth multiplex signal, the fifth multiplex signal, and the sixth multiplex signal sequentially generate the high level pulse in a reverse order to the predetermined order in each of the second row periods of the (2i)th multiplex period. As a result, mura within the display picture of the display panel is eliminated to improve the display quality.
Abstract:
The present invention provides a scan driving circuit utilized to drive cascading scan lines. The scan driving circuit comprises a pull-down control module, a pull-down module, a reset control module, a reset module, a lower transmission module, a first bootstrap capacitor, a constant low voltage source, and a constant high voltage source. By use of the deployment of the reset module, the scan driving circuit of the present invention improves the stability of the scan driving circuit and meanwhile, the structure of the whole scan driving circuit is simplified.
Abstract:
The present invention discloses a liquid crystal driving circuit, comprising the first to fifth electric switches and the first to fourth capacitors. The first and second capacitors are in the main area, and the third and fourth capacitors are in the sub area. The first to third capacitors are coupled in series. The first and second capacitors, the third and fourth capacitors are respectively coupled in parallel between the first and second electric switches and the common voltage end. The fourth and fifth electric switches are coupled in series between the data end and the second electric switch. The first to fourth electric switches are controlled with the gate control end. The data end is respectively coupled to the first, second and fourth electric switches.