Abstract:
Disclosed is a method for producing single- or multi-layered fiber preforms by the TFP process with fiber strands, which are aligned substantially such that they are oriented with the flux of force, are laid on a backing layer and are attached by fixing threads, in order to form a fiber preform with virtually any desired material thickness and without a troublesome backing layer. A release layer is applied at least in certain regions to the backing layer and, after completion of the TFP process, the fiber preform is introduced into a fixing device, in which at least some of the fixing threads are melted by heat being supplied, and subsequently the backing layer, separated from the fiber preform by the release layer, is detached from the fiber preform. The fiber preforms formed by this method have a virtually optimum fiber structure without flaws along with virtually any desired material thickness and are predestined for the production of composite components for load-bearing components that have to withstand high mechanical loads. A backing layer for the production of a fiber preform as well as a fiber preform that is formed in accordance with this method are also disclosed.
Abstract:
A tool for a resin transfer molding method comprises a cavity, a resin trap and a transition region, wherein the cavity is designed such that a component can be accommodated in it. Furthermore, the resin trap is integrated in the tool, and the transition region is designed such that with it a connection between the cavity and the resin trap can be established.
Abstract:
The invention relates to a method for producing single- or multi-layered fibre preforms 1,17 by the TFP process with fibre strands 2-8, 18 which are aligned in particular such that they are oriented with the flux of force, wherein the fibre preforms 1, 17 have virtually any desired material thickness without troublesome backing layers and have virtually any desired surface geometry, comprising the steps of: laying and attaching the fibre strands 2 to 8, 18 on a flexible and elastic base 9, 19, in particular a base 9, 19 formed by an elastomer, with a fixing thread 10, 11 led through a sewing head to form the fibre preform 1, 17 and lifting the fibre preform 1, 17 off the elastic and flexible base 9, 19. The fibre preforms 1, 17 produced by means of the method according to the invention have a virtually optimum fibre alignment, that is to say substantially oriented with the flux of force, and no appreciable flaws in the arrangement of fibres, and consequently make it possible to create composite components that can withstand extreme mechanical stress and are at the same time lightweight, for example by subsequent processing in the RTM process.
Abstract:
The present invention relates to a method and a device for placing at least one material layer onto a relief mould for producing a composite material. Thereby, an elastically-reversibly deformable body with a surface relief that is designed to correspond to the relief mould is pressed against the material layer, as a result of which the surface of said body is deformed, and the material layer can be picked up. As a result of its elastically-reversible characteristics the body subsequently deforms back to its initial state so that the material layer can easily be placed onto the relief mould.
Abstract:
The present invention relates to a connecting structure for an aircraft or spacecraft, with a structural component and a stringer. The stringer is connected to the structural component by means of connecting regions. In order to reduce stress peaks that result for example from impact in the structural component, a high impact material is introduced into at least one of the connecting regions to provide a local increase in the energy absorbing capacity of the at least one connecting region.
Abstract:
A fiber textile semi-finished material is fed directly and reformed onto a carrier and reforming tool, where it is fixed with a binder. The carrier has a contour matching the negative or positive shape of the final required geometry of a preform that is to be fabricated. The reformed semi-finished article fixed with the binder is removed from the carrier to provide the preform. Several preforms of different cross-sectional shapes are joined together, compacted to form a dense component having nearly the required finished contour, impregnated with a matrix system including a curable adhesive resin, and then cured under an elevated temperature and/or pressure. The result is a finished fiber reinforced composite structural element such as an aircraft window frame. This method is carried out on an apparatus including the rotating carrier and reforming tool, which may have a cylindrical and/or annular surface for receiving and reforming the material.
Abstract:
A method of producing a textile preform to be used for making a fiber reinforced plastic composite product involves the following steps. A two- or three-dimensional semi-finished textile material or article is produced by essentially any textile production process, such as weaving, knitting or braiding. A binder is applied to the textile material, which is then subjected to a reforming and/or draping process by being applied onto a carrier and reforming tool having a contour or geometry adapted to that of the desired preform that is to be produced. Thereby, the previously unfixed fibers of the textile material are brought into the desired finished orientation and are then fixed, and the cross-sectional shape of the material is changed. This produces the preform having the desired contour, geometry and fiber orientation. The preform may then be subjected to further processing steps to form the finished composite product.
Abstract:
A window replacement for filling a window frame in an aircraft is provided, in particular a passenger aircraft, the window replacement being fixable by a retainer in the window frame in place of the window assembly when the window assembly is removed. The window replacement includes a panel-shaped element with at least a single curvature, the panel-shaped element being made of a synthetic material. The window replacement is formed by a monolithic panel-shaped element. The panel-shaped element of the window replacement may also be formed by a sandwich panel. This allows a weight reduction in comparison with a window replacement of a metallic material.
Abstract:
A method for producing single- or multi-layered fiber preforms by the TFP process with fiber strands, aligned substantially to be oriented with the flux of force, laid on a backing layer and attached by fixing threads, to form a fiber preform with a desired material thickness and without a backing layer. A release layer is applied at least in certain regions to the backing layer and, after completion of the TFP process, the fiber preform is introduced into a fixing device, in which at least some of the fixing threads are melted. Subsequently the backing layer, separated from the fiber preform by the release layer, is detached from the fiber preform. The fiber preforms have a virtually optimum fiber structure without flaws along with a desired material thickness and are predestined for the production of composite components for load-bearing components that must withstand high mechanical loads.
Abstract:
A docking system for docking a liquid stream carrying line to a docking body, includes a line end having a first form that is conically tapered in the direction of flow and a docking interface which is situated on the docking body and has a second form that is conically tapered in the direction of flow. The first conically tapered form and the second conically tapered form are adapted to one another in such a way that, in the docked state, they are mutually set apart in one coupling region by an interspace defined by a sealing ring, concentrically opposing one another. The first conically tapered form is equipped on its periphery with at least one cleaning element, which extends from the first conically tapered form toward the second conically tapered form in order to capture liquid that may accumulate in the interspace.