Abstract:
A gas turbine engine component includes a wall having first and second wall surfaces, a cooling hole extending through the wall and a convexity. The cooling hole includes an inlet located at the first wall surface, an outlet located at the second wall surface, a metering section extending downstream from the inlet and a diffusing section extending from the metering section to the outlet. The diffusing section includes a first lobe diverging longitudinally and laterally from the metering section and a second lobe adjacent the first lobe and diverging longitudinally and laterally from the metering section. The convexity is located near the outlet.
Abstract:
A gas turbine engine has a fan which includes a plurality of fan blades that are rotatable about an axis, and a compressor section, where the combustor section includes a first compressor and a second compressor aft of the first compressor. At least one first variable guide vane controls operation of the first compressor and at least one second variable guide vane controls operation of the second compressor. A combustor is in fluid communication with the compressor section and a turbine section is in fluid communication with the combustor. A geared architecture is driven by the turbine section for rotating the fan about the axis.
Abstract:
A turbine exhaust case has an outer housing to be secured within a gas turbine engine and a central hub. Struts extend between the outer housing and the central hub. The struts are formed at least in part of a first material. The central hub is formed at least in part of a second material.
Abstract:
A wall of a component of a gas turbine engine includes first and second wall surfaces, an inlet located at the first wall surface, an outlet located at the second surface, a metering section commencing at the inlet and extending downstream from the inlet, and a diffusing section extending from the metering section and terminating at the outlet. The diffusing section includes a leading edge formed at an upstream end of the outlet, a trailing edge formed at a downstream end of the outlet, a body region upstream of the trailing edge, and a plurality of crenellation features located on the body region.
Abstract:
Plated polymeric gas turbine engine parts and methods for fabricating lightweight plated polymeric gas turbine engine parts are disclosed. The parts include a polymeric substrate plated with one or more metal layers. The polymeric material of the polymeric substrate may be structurally reinforced with materials that may include carbon, metal, or glass. The polymeric substrate may also include a plurality of layers to form a composite layup structure.
Abstract:
A gas turbine engine component according to an example of the present disclosure includes, among other things, a wall between first and second wall surfaces. The wall defines at least one cooling passage extending between an inlet along the first wall surface and an outlet along the second wall surface. The outlet has an upstream edge and a downstream edge with respect to a general direction of flow through the at least one cooling passage. The wall defines a plurality of crenellation features along at least the upstream edge. The upstream edge has a first profile established by the plurality of crenellation features, and the downstream edge has a second profile that differs from the first profile. A method of cooling is also disclosed.
Abstract:
Disclosed is a flutter damper, including an acoustic liner in fluid communication with a fluid flow, the acoustic liner being configured for peak acoustical energy absorption at a frequency range that is greater than a frequency range associated with fan flutter, and a plurality of modular chambers, each of the plurality of modular chambers being configured for peak acoustical energy absorption at a frequency range that is associated with one or more fan flutter modes, and the plurality of modular chambers being disposed radially outside of the acoustic liner, and the plurality of modular chambers including a circumferential gap between proximate circumferential ends of at least one adjacent pair of modular chambers, wherein, the plurality of modular chambers each include a plurality of circumferentially aligned and connected chamber segments.
Abstract:
A turbine casing may comprise a casing body a heat pipe disposed in the casing body. The heat pipe may include a vaporization section and a condensation section. The vaporization section may be located forward the condensation section. The vaporization section may be located in a high pressure turbine region of the casing body. The condensation section may be located in a low pressure turbine region of the casing body.
Abstract:
A turbine exhaust case has an outer housing to be secured within a gas turbine engine and a central hub. Struts extend between the outer housing and the central hub. The struts are formed at least in part of a first material. The central hub is formed at least in part of a second material.
Abstract:
Disclosed is a flutter damper, including an acoustic liner in fluid communication with a fluid flow the acoustic liner being configured for peak acoustical energy absorption at a frequency range greater than a frequency range associated with fan flutter, and a plurality of modular chambers configured for peak acoustical energy absorption at a frequency range associated with one or more fan flutter modes, the plurality of modular chambers disposed radially outside the acoustic liner, the plurality of modular chambers including a circumferential gap between proximate circumferential ends of at least one adjacent pair of modular chambers, and the plurality of modular chambers each including a plurality of circumferentially aligned and connected chamber segments, and wherein at least one of the chambers in the plurality of modular chambers has a mutually unique length, width and/or height or shape.